Skip to main content
Top

2014 | OriginalPaper | Chapter

4. ABC of Climate Science

Author : Antoine Bret

Published in: The Energy-Climate Continuum

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By changing the atmosphere composition, fossil fuel emissions couple humanity energy use to the climate. This chapter will focus on climate science, uncovering the link between climate and anthropogenic greenhouse gases emissions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
As early as 1859, John Tyndall found out carbon dioxide greenhouse properties. Mike Hulme’s book Why We Disagree About Climate Change [1] contains a great exposition of the discovery of climate change.
 
3
The reasons why \(T_g\) fluctuates around its trend are discussed in Sect. 2.7 of Ref. [2].
 
4
We forget here about the “albedo.” See Sect. 4.3.
 
5
Regarding these 100 years, see the calculation performed in Sect. 5.​5.
 
6
See Chap. 3. The \(3\times 10^{12}=\) 3,000 Gbarrels are a little more optimistic than the 2,500 we found.
 
7
In terms of fundamental physical constants, \(\sigma = \pi ^2k_B^4/60\hbar ^3c^2\) where \(k_B\) is the Boltzmann constant, \(\hbar \) the Planck constant \(h\) divided by \(2\pi \), and \(c\) the speed of light.
 
8
Such a low temperature without greenhouse effect is due to Venus’ extremely high albedo \(\alpha =0.9\).
 
9
The French “Institut Pierre Simon Laplace” has posted on YouTube a great video on climate simulations at www.​youtube.​com/​watch?​v=​ADf8-rmEtNg.
 
10
The French glaciologist Claude Lorius tells how he got the idea in 1965 that ancient air bubble could be trapped in ice cores: “It was when I saw these bubbles bursting when an ice cube melted in a glass of whiskey that I had the feeling they could be reliable and unique indicators of the composition of air, something we subsequently proved was correct”. In vino veritas... [16].
 
11
Just compute \(dT_e/dC_S\).
 
12
See definition in Appendix A.
 
13
By the way, this very objection holds against the Milankovitch cycles as well. Besides their improper timescale, how would they suddenly produce something they never did during the last million years?
 
14
Suppose you have 1,000 carbon-14 atoms before you. Wait 5,730 years, half of them, will have turned to nitrogen. Wait another 5,730 years, and half of the remaining carbon-14 decay. Every 5,730 years, half of the carbon-14 decay. Until there is no more left.
 
15
The number of C-14 atoms is divided by 2 every 5,730 years. So in 1 million years, it is divided (1000,000/5,730) times by 2, which means divided by \(2^{174}=2.4\times 10^{52}\). So even if you started with \(10^{50}\) of them, the number of atoms on Earth according to Wolfram Alpha, there is not any single one left after 1 million years (the number \(10^{50}\) can be easily checked, order of magnitude wise, knowing the Earth’ mass and assuming it is made up of iron).
 
16
One ton of carbon gives 3.67 t of CO\(_2\) by virtue of the atomic weights of carbon and oxygen. For the calculation, we also need the volume of the atmosphere, \(4\times 10^9\) km\(^3\), and the CO\(_2\) density, \(1.96\) kg/m\(^3\).
 
17
See a full description of the scenarios in [13] p. 18. Figure 4.10 comes from the 2007 IPCC report. Similar information can be derived from figures SPM.7 & TS.19 of the 2013 document [2], pp. 21 & 94.
 
18
CO\(_2\) is not the only greenhouse gas. Methane (CH\(_4\)), for example, is another one. All GHG emissions are therefore converted to “CO\(_2\) equivalent” according to rules we will not detail here (see [2, p. 710]). This allows to represent the full amount of GHG emissions with a single number.
 
19
The complete melting of Greenland and Antarctica ice sheets would result is a sea-level rise of \(7+58=65\) m [2, p. 321]. Just take their volume, divide by the surface of the oceans, and you find the good order of magnitude. A \({+}5\) \(^{\circ }\)C temperature rise could submerge the home of 600 million people, together with 150 of the 981 UNESCO world heritage sites [32]. For more on the impact of climate change, see the 2014 report of the IPCC Work Group II, Climate Change 2014: Impacts, Adaptation and Vulnerability (www.​ipcc.​ch).
 
Literature
1.
go back to reference M. Hulme, Why We Disagree About Climate Change: Understanding Controversy, Inaction and Opportunity (Cambridge University Press, Cambridge, 2009)CrossRef M. Hulme, Why We Disagree About Climate Change: Understanding Controversy, Inaction and Opportunity (Cambridge University Press, Cambridge, 2009)CrossRef
2.
go back to reference IPCC. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2014) IPCC. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2014)
3.
go back to reference I. Velicogna, Increasing rates of ice mass loss from the greenland and antarctic ice sheets revealed by grace. Geophys. Res. Lett. 36, L19503 (2009)CrossRef I. Velicogna, Increasing rates of ice mass loss from the greenland and antarctic ice sheets revealed by grace. Geophys. Res. Lett. 36, L19503 (2009)CrossRef
4.
go back to reference J.E. Walsh, A data set on northern hemisphere sea ice extent. world data center—A for glaciology (snow and ice). Glaciological Data, Report GD-2, 1:49–51 (1978) J.E. Walsh, A data set on northern hemisphere sea ice extent. world data center—A for glaciology (snow and ice). Glaciological Data, Report GD-2, 1:49–51 (1978)
5.
go back to reference J. Lovelock, The Vanishing Face of Gaia: A Final Warning (Basic Books, London, 2009) J. Lovelock, The Vanishing Face of Gaia: A Final Warning (Basic Books, London, 2009)
6.
go back to reference R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031), 805–809 (2011) R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031), 805–809 (2011)
7.
go back to reference F.A. Armstrong, K.M. Blundell, Energy...Beyond Oil (Oxford University Press, Oxford, 2007) F.A. Armstrong, K.M. Blundell, Energy...Beyond Oil (Oxford University Press, Oxford, 2007)
8.
go back to reference K. McGuffie, A. Henderson-Sellers, A Climate Modelling Primer (Wiley, London, 2005)CrossRef K. McGuffie, A. Henderson-Sellers, A Climate Modelling Primer (Wiley, London, 2005)CrossRef
9.
go back to reference A.P. Ingersoll, News & views, Venus: Express dispatches. Nature 450(November), 617–619 (2007) A.P. Ingersoll, News & views, Venus: Express dispatches. Nature 450(November), 617–619 (2007)
10.
go back to reference J.T. Houghton, Global Warming: The Complete Briefing (Cambridge University Press, Cambridge, 2004) J.T. Houghton, Global Warming: The Complete Briefing (Cambridge University Press, Cambridge, 2004)
11.
go back to reference J.D. Neelin, Climate Change and Climate Modeling (Cambridge University Press, Cambridge, 2010)CrossRef J.D. Neelin, Climate Change and Climate Modeling (Cambridge University Press, Cambridge, 2010)CrossRef
13.
go back to reference IPCC. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, (2007) IPCC. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, (2007)
14.
15.
go back to reference H.F. Parish, G. Schubert, C. Covey, R.L. Walterscheid, A. Grossman, S. Lebonnois, Decadal variations in a venus general circulation model. Icarus 212(1), 42–65 (2011) H.F. Parish, G. Schubert, C. Covey, R.L. Walterscheid, A. Grossman, S. Lebonnois, Decadal variations in a venus general circulation model. Icarus 212(1), 42–65 (2011)
16.
17.
go back to reference J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735), 429 (1999) J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735), 429 (1999)
18.
go back to reference R.A. García, S. Mathur, D. Salabert, J. Ballot, C. Régulo, T.S. Metcalfe, A. Baglin, CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star. Science 329, 1032 (2010) R.A. García, S. Mathur, D. Salabert, J. Ballot, C. Régulo, T.S. Metcalfe, A. Baglin, CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star. Science 329, 1032 (2010)
19.
go back to reference J.D. Haigh, The sun and the earth’s climate. Living Reviews Solar Phys. 4(2) (2007) J.D. Haigh, The sun and the earth’s climate. Living Reviews Solar Phys. 4(2) (2007)
20.
go back to reference P. Charbonneau, P.K. Smolarkiewicz, Modeling the solar dynamo. Science 340, 42–43 (2013) P. Charbonneau, P.K. Smolarkiewicz, Modeling the solar dynamo. Science 340, 42–43 (2013)
21.
go back to reference D. Luthi, M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, T.F. Stocker, High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008) D. Luthi, M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, T.F. Stocker, High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008)
22.
go back to reference J.E. Harries, H.E. Brindley, P.J. Sagoo, R.J. Bantges, Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the earth in 1970 and 1997. Nature 410, 355 (2001)CrossRef J.E. Harries, H.E. Brindley, P.J. Sagoo, R.J. Bantges, Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the earth in 1970 and 1997. Nature 410, 355 (2001)CrossRef
23.
go back to reference H.M. Worden, K.W. Bowman, J.R. Worden, A. Eldering, R. Beer, Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nat. Geosci. 1, 305 (2008) H.M. Worden, K.W. Bowman, J.R. Worden, A. Eldering, R. Beer, Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nat. Geosci. 1, 305 (2008)
24.
go back to reference G.D. Farquhar, J.R. Ehleringer, K.T. Hubick, Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40(1), 503–537 (1989) G.D. Farquhar, J.R. Ehleringer, K.T. Hubick, Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40(1), 503–537 (1989)
25.
go back to reference H.E. Suess, Radiocarbon concentration in modern wood. Science 122, 415–417 (1955)CrossRef H.E. Suess, Radiocarbon concentration in modern wood. Science 122, 415–417 (1955)CrossRef
26.
go back to reference I. Levin, K.O. Munnich, W. Weiss, The effect of anthropogenic \({\rm {CO}}_2\) and C-14 sources on the distribution of C-14 in the atmosphere. Radiocarbon 22(2), 379–391 (1980) I. Levin, K.O. Munnich, W. Weiss, The effect of anthropogenic \({\rm {CO}}_2\) and C-14 sources on the distribution of C-14 in the atmosphere. Radiocarbon 22(2), 379–391 (1980)
27.
go back to reference L. Bernstein, R.K. Pachauri, IPCC, A. Reisinger, Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change (2008) L. Bernstein, R.K. Pachauri, IPCC, A. Reisinger, Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change (2008)
28.
go back to reference M. Lynas. Six Degrees: Our Future on a Hotter Planet. National Geographic Society (2008) M. Lynas. Six Degrees: Our Future on a Hotter Planet. National Geographic Society (2008)
29.
go back to reference J. Pross, L. Contreras, P.K. Bijl, D.R. Greenwood, S.M. Bohaty, J.A. Bendle, U. Röhl, L. Tauxe, J.I. Raine, C.E. Huck, T. van de Flierdt, S.S.R. Jamieson, C.E. Stickley, B. van de Schootbrugge, S. Schouten, C. Escutia, H. Brinkhuis. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 7377 (2012) J. Pross, L. Contreras, P.K. Bijl, D.R. Greenwood, S.M. Bohaty, J.A. Bendle, U. Röhl, L. Tauxe, J.I. Raine, C.E. Huck, T. van de Flierdt, S.S.R. Jamieson, C.E. Stickley, B. van de Schootbrugge, S. Schouten, C. Escutia, H. Brinkhuis. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 7377 (2012)
30.
go back to reference M. Huber, R. Caballero, The early Eocene equable climate problem revisited. Climate Past 7, 603–633 (2011) M. Huber, R. Caballero, The early Eocene equable climate problem revisited. Climate Past 7, 603–633 (2011)
31.
go back to reference D. Hinrichsen, Coasts under pressure. People Planet 3(1), 6–9 (1994) D. Hinrichsen, Coasts under pressure. People Planet 3(1), 6–9 (1994)
32.
go back to reference B. Marzeion, A. Levermann, Loss of cultural world heritage and currently inhabited places to sea-level rise. Env. Res. Lett. 9, 034001 (2014) B. Marzeion, A. Levermann, Loss of cultural world heritage and currently inhabited places to sea-level rise. Env. Res. Lett. 9, 034001 (2014)
Metadata
Title
ABC of Climate Science
Author
Antoine Bret
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-07920-2_4