Skip to main content
Top

2012 | OriginalPaper | Chapter

About the ABC Conjecture and an alternative

Author : Machiel van Frankenhuijsen

Published in: Number Theory, Analysis and Geometry

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

After a detailed discussion of the ABC Conjecture, we discuss three alternative conjectures proposed by Baker in 2004. The third alternative is particularly interesting, because there may be a way to prove it using the methods of linear forms in logarithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
See [GdS07], which is also of interest to non-Dutch readers for a photographic reproduction of the relevant page.
 
2
In other words, (4) implies the classical result of Siegel and Mahler on the S-unit equation. The innovation of Stewart and Tijdeman was to use Baker’s theorem on linear forms in logarithms, generalized to p-adic logarithms, to make this result effective.
 
3
If ψ is not explicitly known, one would deduce that there could only be finitely many counterexamples to Fermat’s Last Theorem, but one would not know when to stop looking for one.
 
4
We have omitted from our table all abc sums with h > 50, since beyond a height of 50 our table is definitely not exhaustive and therefore useless. By November 2009, the project [LPS09] had resulted in an exhaustive search up to height 29. 9337 (i.e., up to c = 1013, apparently improved to 1020 [N09]). Schulmeiss has found some very large abc sums that satisfy (6), the largest of which has a height of 5, 114. Since these sums were not obtained by an exhaustive search, they are less useful to check different versions of the ABC Conjecture.
 
5
This criterion is closely related to the “merit”, see [GdS07,  dS09]. See also (7) below, which contains the same information as an inequality for the merit.
 
6
As alluded to in the introduction, the value 1 ∕ 2 may be related to the Riemann Hypothesis. Michel Waldschmidt pointed out to me that the most accessible approach to such a connection may be to construct a sequence of abc sums such that \(h(P) - r(P) \geq h{(P)}^{\theta -\varepsilon }\), given a hypothetical zero of the Riemann zeta function with real part θ > 1 ∕ 2.
 
7
If ω(c) is the least value among ω(a), ω(b) and ω(c), then \({\omega }_{\mathrm{max}} = \omega (a) + \omega (b)\) and \(\omega (abc) = {\omega }_{\mathrm{max}} + \omega (c) \leq{\omega }_{\mathrm{max}} + \frac{1} {2}(\omega (a) + \omega (b))\).
 
Literature
B96.
go back to reference A. Baker, Logarithmic forms and the abc-conjecture, in: Number theory (Diophantine, computational and algebraic aspects), Proceedings of the international conference, Eger, Hungary, July 29–August 2, 1996 (Györy, Kalman et al., ed.), de Gruyter, Berlin, 1998, 37–44. A. Baker, Logarithmic forms and the abc-conjecture, in: Number theory (Diophantine, computational and algebraic aspects), Proceedings of the international conference, Eger, Hungary, July 29–August 2, 1996 (Györy, Kalman et al., ed.), de Gruyter, Berlin, 1998, 37–44.
B04.
go back to reference A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65/3-4 (2004), 253–260. A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65/3-4 (2004), 253–260.
C73.
go back to reference J. R. Chen, On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, Sci. Sinica 16 (1973), 157–176. J. R. Chen, On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, Sci. Sinica 16 (1973), 157–176.
C78.
go back to reference J. R. Chen, On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, II, Sci. Sinica 21 (1978), 421–430. J. R. Chen, On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, II, Sci. Sinica 21 (1978), 421–430.
GdS07.
go back to reference G. Geuze, B. de Smit, Reken mee met ABC, Nieuw Archief voor de Wiskunde 5/8, no. 1, March 2007. G. Geuze, B. de Smit, Reken mee met ABC, Nieuw Archief voor de Wiskunde 5/8, no. 1, March 2007.
HW60.
go back to reference G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1960. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1960.
La05.
go back to reference S. Lang, Questions about the error term of Diophantine inequalities, preprint, 2005. S. Lang, Questions about the error term of Diophantine inequalities, preprint, 2005.
LC90.
go back to reference S. Lang and W. Cherry, Topics in Nevanlinna Theory, Lect. Notes in Math. 1433, Springer-Verlag, New York, 1990. S. Lang and W. Cherry, Topics in Nevanlinna Theory, Lect. Notes in Math. 1433, Springer-Verlag, New York, 1990.
Ma84.
go back to reference R. C. Mason, Diophantine Equations over Functions Fields, London Math. Soc. LNS 96, Cambridge, 1984. R. C. Mason, Diophantine Equations over Functions Fields, London Math. Soc. LNS 96, Cambridge, 1984.
Mas02.
go back to reference D. Masser, On abc and discriminants, Proc. Amer. Math. Soc. 130 (2002), 3141–3150. D. Masser, On abc and discriminants, Proc. Amer. Math. Soc. 130 (2002), 3141–3150.
O88.
go back to reference J. Oesterlé, Nouvelles approches du “Théorème” de Fermat, Sém. Bourbaki 1987–1988 no. 694, Astérisque 161–162 (1988), 165–186. J. Oesterlé, Nouvelles approches du “Théorème” de Fermat, Sém. Bourbaki 1987–1988 no. 694, Astérisque 161–162 (1988), 165–186.
Si84.
go back to reference J. H. Silverman, The S-unit equation over function fields, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 3–4. J. H. Silverman, The S-unit equation over function fields, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 3–4.
Sm93.
go back to reference A. L. Smirnov, Hurwitz inequalities for number fields, St. Petersburg Math. J. 4 (1993), 357–375. A. L. Smirnov, Hurwitz inequalities for number fields, St. Petersburg Math. J. 4 (1993), 357–375.
StTe.
go back to reference C. L. Stewart, G. Tenenbaum, A refinement of the ABC Conjecture, preprint. C. L. Stewart, G. Tenenbaum, A refinement of the ABC Conjecture, preprint.
StTi86.
go back to reference C. L. Stewart and R. Tijdeman, On the Oesterlé-Masser conjecture, Mh. Math. 102 (1986), 251–257. C. L. Stewart and R. Tijdeman, On the Oesterlé-Masser conjecture, Mh. Math. 102 (1986), 251–257.
StY01.
go back to reference C. L. Stewart and K. Yu, On the abc conjecture, II, Duke Math. J. 108 (2001), 169–181. C. L. Stewart and K. Yu, On the abc conjecture, II, Duke Math. J. 108 (2001), 169–181.
Sto81.
go back to reference W. W. Stothers, Polynomial identities and hauptmoduln, Quart. J. Math. Oxford (2) 32 (1981), 349–370. W. W. Stothers, Polynomial identities and hauptmoduln, Quart. J. Math. Oxford (2) 32 (1981), 349–370.
vF95.
go back to reference M. van Frankenhuijsen, Hyperbolic Spaces and the ABC Conjecture, thesis, Katholieke Universiteit Nijmegen, 1995. M. van Frankenhuijsen, Hyperbolic Spaces and the ABC Conjecture, thesis, Katholieke Universiteit Nijmegen, 1995.
vF00.
go back to reference M. van Frankenhuijsen, A lower bound in the ABC Conjecture, J. of Number Theory 82 (2000), 91–95. M. van Frankenhuijsen, A lower bound in the ABC Conjecture, J. of Number Theory 82 (2000), 91–95.
vF04.
go back to reference M. van Frankenhuijsen, The ABC conjecture implies Vojta’s Height Inequality for Curves, J. Number Theory 95 (2002), 289–302. M. van Frankenhuijsen, The ABC conjecture implies Vojta’s Height Inequality for Curves, J. Number Theory 95 (2002), 289–302.
vF06.
go back to reference M. van Frankenhuijsen, ABC implies the radicalized Vojta height inequality for curves, J. Number Theory 127 (2007), 292–300. M. van Frankenhuijsen, ABC implies the radicalized Vojta height inequality for curves, J. Number Theory 127 (2007), 292–300.
Metadata
Title
About the ABC Conjecture and an alternative
Author
Machiel van Frankenhuijsen
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1260-1_9

Premium Partner