Skip to main content
Top

2024 | OriginalPaper | Chapter

Abstract: Robust Multi-contrast MRI Denoising using Trainable Bilateral Filters without Noise-free Targets

Authors : Laura Pfaff, Fabian Wagner, Julian Hossbach, Elisabeth Preuhs, Mareike Thies, Felix Denzinger, Dominik Nickel, Tobias Wuerfl, Andreas Maier

Published in: Bildverarbeitung für die Medizin 2024

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Magnetic resonance imaging (MRI) is widely acknowledged as one of the most diagnostically valuable and versatile medical imaging techniques available today, characterized by its exceptional soft tissue contrast, the absence of ionizing radiation, and the capability to acquire multiple different image contrasts. However, low signal-to-noise ratio (SNR) is a common challenge, particularly in low-field MRI scans, leading to reduced image quality and impaired diagnostic value. The effectiveness of traditional denoising methods, such as bilateral filters (BFs), heavily relies on the choice of hyperparameters. In contrast, deep learning approaches like convolutional neural networks (CNNs) are computationally demanding, require paired noisy and noise-free data for supervised learning, and often struggle to generalize to different magnetic resonance (MR) image contrasts. To bridge the gap between traditional denoising methods and deep learning, we employ a novel approach that combines a neural network comprised of trainable BF layers. This network is trained using an extended version of Stein’s unbiased risk estimator (SURE) as a self-supervised loss function, which estimates the mean squared error (MSE) between the denoised image and the unknown noise-free ground truth by incorporating a noise level map [1]. Our experiments demonstrate the effectiveness of our self-supervised approach, with the BF network outperforming the CNN by 14.7% in terms of peak signal-to-noise ratio (PSNR) when tested on unseen MR image contrasts. In conclusion, our research introduces a novel approach to address noise reduction challenges in MRI, particularly in low-SNR scenarios and across different MR image contrasts. The combination of trainable BF layers and SURE-based model supervision holds potential for future research in medical imaging, as it eliminates the dependency on noise-free training data, demonstrating parameter-efficiency, robustness and enhanced diagnostic outcomes even in the presence of unseen MR image features.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
Abstract: Robust Multi-contrast MRI Denoising using Trainable Bilateral Filters without Noise-free Targets
Authors
Laura Pfaff
Fabian Wagner
Julian Hossbach
Elisabeth Preuhs
Mareike Thies
Felix Denzinger
Dominik Nickel
Tobias Wuerfl
Andreas Maier
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-658-44037-4_11

Premium Partner