Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Accurate Thermochemistry for Large Molecules with Modern Density Functionals

Authors : Marc Steinmetz, Andreas Hansen, Stephan Ehrlich, Tobias Risthaus, Stefan Grimme

Published in: Density Functionals

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermodynamic properties of molecules are of fundamental interest in chemistry and engineering. This chapter deals with developments made in the last few years in the search for accurate density functional theory-based quantum chemical electronic structure methods for this purpose. The typical target accuracy for reaction energies of larger systems in the condensed phase is realistically about 2 kcal/mol. This level is within reach of modern density functional approximations when combined with appropriate continuum solvation models and slightly modified thermostatistical corrections. Nine higher-level functionals of dispersion corrected hybrid, range-separated hybrid, and double-hybrid type were first tested on four common, mostly small molecule, thermochemical benchmark sets. These results are complemented by four large molecule reaction examples. In these systems with 70–200 atoms, long-range electron correlation is responsible for important parts of the interactions and dispersion-uncorrected functionals fail badly. When used together with properly polarized triple- or quadruple-zeta type AO basis sets, most of the investigated functionals provide accurate gas phase reaction energies close to the values estimated from experiment. The use of theoretical back-correction schemes for solvation and thermal effects, the impact of the self-interaction error for unsaturated systems, and the prospect of local coupled-cluster based reference energies as benchmarks are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hohenberg P, Kohn W (1964) Phys Rev B 136:B864 Hohenberg P, Kohn W (1964) Phys Rev B 136:B864
2.
3.
go back to reference Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford
4.
go back to reference Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, New York Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, New York
5.
go back to reference Dreizler J, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, Berlin Dreizler J, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, Berlin
6.
go back to reference Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063 Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063
7.
go back to reference Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764 Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764
8.
go back to reference Karton A, Tarnopolsky A, Lamère JF, Schatz GC, Martin JML (2008) J Phys Chem A 112:12868 Karton A, Tarnopolsky A, Lamère JF, Schatz GC, Martin JML (2008) J Phys Chem A 112:12868
9.
go back to reference Jurečka P, Šponer J, Černý J, Hobza P (2006) Phys Chem Chem Phys 8:1985 Jurečka P, Šponer J, Černý J, Hobza P (2006) Phys Chem Chem Phys 8:1985
10.
go back to reference Řezáč J, Riley KE, Hobza P (2011) J Chem Theor Comput 7:2427 Řezáč J, Riley KE, Hobza P (2011) J Chem Theor Comput 7:2427
11.
go back to reference Řezáč J, Riley KE, Hobza P (2012) J Chem Theor Comput 8:4285 Řezáč J, Riley KE, Hobza P (2012) J Chem Theor Comput 8:4285
12.
go back to reference Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109:2012 Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109:2012
13.
go back to reference Zhao Y, Ng HT, Peverati R, Truhlar DG (2012) J Chem Theor Comput 8:2824 Zhao Y, Ng HT, Peverati R, Truhlar DG (2012) J Chem Theor Comput 8:2824
14.
go back to reference Grimme S, Steinmetz M, Korth M (2007) J Org Chem 72:2118 Grimme S, Steinmetz M, Korth M (2007) J Org Chem 72:2118
15.
go back to reference Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Phys Chem Chem Phys 12:6940 Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Phys Chem Chem Phys 12:6940
16.
go back to reference Korth M, Grimme S (2009) J Chem Theor Comput 5:993 Korth M, Grimme S (2009) J Chem Theor Comput 5:993
17.
go back to reference Goerigk L, Grimme S (2011) J Chem Theor Comput 7:291 Goerigk L, Grimme S (2011) J Chem Theor Comput 7:291
18.
go back to reference Averkiev BB, Zhao Y, Truhlar DG (2010) J Mol Cat A Chem 324:80 Averkiev BB, Zhao Y, Truhlar DG (2010) J Mol Cat A Chem 324:80
19.
go back to reference Zhao Y, Truhlar DG (2006) J Chem Phys 124:224105 Zhao Y, Truhlar DG (2006) J Chem Phys 124:224105
20.
go back to reference Schultz NE, Zhao Y, Truhlar DG (2007) J Comput Chem 29:185 Schultz NE, Zhao Y, Truhlar DG (2007) J Comput Chem 29:185
21.
go back to reference Jiang W, Laury ML, Powell M, Wilson AK (2012) J Chem Theor Comput 8:4102 Jiang W, Laury ML, Powell M, Wilson AK (2012) J Chem Theor Comput 8:4102
22.
go back to reference Hughes TF, Harvey JN, Friesner RA (2012) Phys Chem Chem Phys 14:7724 Hughes TF, Harvey JN, Friesner RA (2012) Phys Chem Chem Phys 14:7724
23.
24.
go back to reference Steinmetz M, Grimme S (2013) ChemistryOpen 2:115 Steinmetz M, Grimme S (2013) ChemistryOpen 2:115
25.
go back to reference Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134 Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134
26.
go back to reference Kristyán S, Pulay P (1994) Chem Phys Lett 229:175 Kristyán S, Pulay P (1994) Chem Phys Lett 229:175
27.
go back to reference Hobza P, Šponer J, Reschel T (1995) J Comput Chem 16:1315 Hobza P, Šponer J, Reschel T (1995) J Comput Chem 16:1315
28.
go back to reference Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741 Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741
29.
go back to reference Klimeš J, Michaelides A (2012) J Chem Phys 137:120901 Klimeš J, Michaelides A (2012) J Chem Phys 137:120901
30.
go back to reference Grimme S (2011) Wiley Interdiscip Rev Comput Mol Sci 1:211 Grimme S (2011) Wiley Interdiscip Rev Comput Mol Sci 1:211
31.
go back to reference Grimme S, Huenerbein R, Ehrlich S (2011) ChemPhysChem 12:1258 Grimme S, Huenerbein R, Ehrlich S (2011) ChemPhysChem 12:1258
32.
go back to reference Rappoport D, Crawford NRM, Furche F, Burke K (2009) In: Solomon EI, Scott RA, King RB (eds) Computational inorganic and bioinorganic chemistry. Wiley-VCH, New York, pp 159–172 Rappoport D, Crawford NRM, Furche F, Burke K (2009) In: Solomon EI, Scott RA, King RB (eds) Computational inorganic and bioinorganic chemistry. Wiley-VCH, New York, pp 159–172
33.
34.
35.
go back to reference Klamt A (2011) Wiley Interdiscip Rev Comput Mol Sci 1:699 Klamt A (2011) Wiley Interdiscip Rev Comput Mol Sci 1:699
36.
37.
38.
go back to reference Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829 Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829
39.
40.
go back to reference Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) J Chem Phys 139:134101 Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) J Chem Phys 139:134101
41.
go back to reference Hansen A, Djukic JP, Bannwarth C, Grimme S, to be published Hansen A, Djukic JP, Bannwarth C, Grimme S, to be published
42.
go back to reference Császár AG, Allen WD, Schaefer HF III (1998) J Chem Phys 108:9751 Császár AG, Allen WD, Schaefer HF III (1998) J Chem Phys 108:9751
43.
go back to reference Hobza P, Šponer J (2002) J Am Chem Soc 124:11802 Hobza P, Šponer J (2002) J Am Chem Soc 124:11802
44.
go back to reference Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297 Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297
45.
go back to reference Perdew JP (1999) In: Geerlings P, Proft FD, Langenaeker W (eds) The functional zoo. VUB University Press, Brussel, pp 87–109 Perdew JP (1999) In: Geerlings P, Proft FD, Langenaeker W (eds) The functional zoo. VUB University Press, Brussel, pp 87–109
46.
47.
48.
go back to reference Perdew JP, Schmidt K (2001) In: Doren VEV, Alsenoy CV, Geerlings P (eds) Density functional theory and its applications to materials, AIP conference proceedings, vol 577. American Institute of Physics, New York Perdew JP, Schmidt K (2001) In: Doren VEV, Alsenoy CV, Geerlings P (eds) Density functional theory and its applications to materials, AIP conference proceedings, vol 577. American Institute of Physics, New York
49.
go back to reference Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123:062201 Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123:062201
50.
go back to reference Peverati R, Truhlar DG (2014) Phil Trans R Soc A 372:20120476 Peverati R, Truhlar DG (2014) Phil Trans R Soc A 372:20120476
51.
go back to reference Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623 Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623
52.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865, (1997) Erratum Phys Rev Lett 77:1396 Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865, (1997) Erratum Phys Rev Lett 77:1396
53.
go back to reference Adamo C, Barone V (1999) J Chem Phys 110:6158 Adamo C, Barone V (1999) J Chem Phys 110:6158
54.
go back to reference Csonka GI, Perdew JP, Ruzsinszky A (2010) J Chem Theor Comput 6:3688 Csonka GI, Perdew JP, Ruzsinszky A (2010) J Chem Theor Comput 6:3688
55.
go back to reference Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104 Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104
56.
go back to reference Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456 Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456
57.
go back to reference Vydrov OA, van Voorhis T (2010) J Chem Phys 133:244103 Vydrov OA, van Voorhis T (2010) J Chem Phys 133:244103
58.
go back to reference Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670 Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670
59.
go back to reference Hujo W, Grimme S (2011) J Chem Theor Comput 7:3866 Hujo W, Grimme S (2011) J Chem Theor Comput 7:3866
60.
go back to reference Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540 Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540
61.
go back to reference Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615 Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615
62.
go back to reference Lin YS, Li GD, Mao SP, Chai JD (2013) J Chem Theor Comput 9:263 Lin YS, Li GD, Mao SP, Chai JD (2013) J Chem Theor Comput 9:263
63.
go back to reference Zhao Y, Lynch BJ, Truhlar DG (2003) J Phys Chem A 108:4786 Zhao Y, Lynch BJ, Truhlar DG (2003) J Phys Chem A 108:4786
64.
go back to reference Neese F, Schwabe T, Grimme S (2007) J Chem Phys 126:124115 Neese F, Schwabe T, Grimme S (2007) J Chem Phys 126:124115
65.
66.
go back to reference Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43 Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43
67.
go back to reference Ángyán JG, Gerber IC, Savin A, Toulouse J (2005) Phys Rev A 72:012510 Ángyán JG, Gerber IC, Savin A, Toulouse J (2005) Phys Rev A 72:012510
68.
69.
go back to reference Grimme S, Goerigk L, Fink RF (2012) Wiley Interdiscip Rev Comput Mol Sci 2:868 Grimme S, Goerigk L, Fink RF (2012) Wiley Interdiscip Rev Comput Mol Sci 2:868
70.
go back to reference Kozuch S, Martin JML (2013) J Comput Chem 34:2327 Kozuch S, Martin JML (2013) J Comput Chem 34:2327
71.
go back to reference Becke AD, Johnson ER (2005) J Chem Phys 123:154101 Becke AD, Johnson ER (2005) J Chem Phys 123:154101
72.
go back to reference Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005 Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005
73.
go back to reference Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Phys Rev Lett 108:236402 Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Phys Rev Lett 108:236402
74.
go back to reference Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401 Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401
75.
go back to reference Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101 Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101
76.
go back to reference Casimir HBG, Polder D (1948) Phys Rev 73:360 Casimir HBG, Polder D (1948) Phys Rev 73:360
77.
go back to reference Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, Oxford Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, Oxford
78.
go back to reference Ehrlich S, Moellmann J, Reckien W, Bredow T, Grimme S (2011) ChemPhysChem 12:3414 Ehrlich S, Moellmann J, Reckien W, Bredow T, Grimme S (2011) ChemPhysChem 12:3414
79.
80.
81.
go back to reference Ruzsinszky A, Perdew JP (2011) Comput Theor Chem 963:2 Ruzsinszky A, Perdew JP (2011) Comput Theor Chem 963:2
82.
go back to reference Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289 Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289
84.
go back to reference Kozuch S, Martin JML (2011) Phys Chem Chem Phys 13:20104 Kozuch S, Martin JML (2011) Phys Chem Chem Phys 13:20104
85.
go back to reference Brémond E, Adamo C (2011) J Chem Phys 135:024106 Brémond E, Adamo C (2011) J Chem Phys 135:024106
86.
go back to reference Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157 Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157
87.
88.
go back to reference Zhang Y, Yang W (1998) J Chem Phys 109:2604 Zhang Y, Yang W (1998) J Chem Phys 109:2604
89.
go back to reference Gritsenko O, Ensing B, Schipper PRT, Baerends EJ (2000) J Phys Chem A 104:8558 Gritsenko O, Ensing B, Schipper PRT, Baerends EJ (2000) J Phys Chem A 104:8558
90.
go back to reference Mori-Sánchez P, Cohen AJ, Yang W (2006) J Chem Phys 125:201102 Mori-Sánchez P, Cohen AJ, Yang W (2006) J Chem Phys 125:201102
91.
92.
go back to reference Schirmer B, Grimme S (2013) Top Curr Chem 332:213 Schirmer B, Grimme S (2013) Top Curr Chem 332:213
93.
go back to reference Grimme S, Steinmetz M (2013) Phys Chem Chem Phys 15:16031 Grimme S, Steinmetz M (2013) Phys Chem Chem Phys 15:16031
94.
go back to reference Andrae D, Häußermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123 Andrae D, Häußermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123
95.
go back to reference Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243 Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243
96.
go back to reference Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Chem Phys Lett 302:437 Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Chem Phys Lett 302:437
97.
go back to reference Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41 Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41
98.
go back to reference Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396 Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396
99.
go back to reference Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283 Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283
100.
go back to reference Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119 Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119
101.
go back to reference Weigend F (2006) Phys Chem Chem Phys 8:1057 Weigend F (2006) Phys Chem Chem Phys 8:1057
102.
go back to reference Weigend F, Häser M (1997) Theor Chem Acc 97:331 Weigend F, Häser M (1997) Theor Chem Acc 97:331
103.
go back to reference Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175 Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175
104.
go back to reference Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theor Comput 4:1996 Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theor Comput 4:1996
105.
go back to reference Mardirossian N, Head-Gordon M (2013) J Chem Theor Comput 9:4453 Mardirossian N, Head-Gordon M (2013) J Chem Theor Comput 9:4453
107.
go back to reference Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165 Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165
108.
go back to reference Neese F (2013) ORCA—an ab initio, density functional and semiempirical program package, Ver. 3.0 (Rev 0). Max Planck Institute Energy Conversion Chemistry, Germany Neese F (2013) ORCA—an ab initio, density functional and semiempirical program package, Ver. 3.0 (Rev 0). Max Planck Institute Energy Conversion Chemistry, Germany
109.
go back to reference Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73 Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73
110.
go back to reference Eckert F, Klamt A (2010) COSMOtherm, Version C2.1, Release 01.11. COSMOlogic GmbH & Co. KG, Leverkusen, Germany Eckert F, Klamt A (2010) COSMOtherm, Version C2.1, Release 01.11. COSMOlogic GmbH & Co. KG, Leverkusen, Germany
111.
go back to reference Goerigk L, Grimme S (2010) J Chem Theor Comput 6:107 Goerigk L, Grimme S (2010) J Chem Theor Comput 6:107
112.
go back to reference Burns LA, Vázquez-Mayagoitia A, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107 Burns LA, Vázquez-Mayagoitia A, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107
113.
go back to reference Risthaus T, Grimme S (2013) J Chem Theor Comput 9:1580 Risthaus T, Grimme S (2013) J Chem Theor Comput 9:1580
114.
go back to reference Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715 Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715
115.
go back to reference Luo S, Zhao Y, Truhlar DG (2011) Phys Chem Chem Phys 13:13683 Luo S, Zhao Y, Truhlar DG (2011) Phys Chem Chem Phys 13:13683
116.
go back to reference Kruse H, Goerigk L, Grimme S (2012) J Org Chem 77:10824 Kruse H, Goerigk L, Grimme S (2012) J Org Chem 77:10824
117.
go back to reference Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46 Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46
118.
go back to reference Grimme S, Schreiner PR (2011) Angew Chem Int Ed 50:12639 Grimme S, Schreiner PR (2011) Angew Chem Int Ed 50:12639
119.
go back to reference Goerigk L, Kruse H, Grimme S (2011) ChemPhysChem 12:3421 Goerigk L, Kruse H, Grimme S (2011) ChemPhysChem 12:3421
120.
go back to reference Wittman JM, Hayoun R, Kaminsky W, Coggins MK, Mayer JM (2013) J Am Chem Soc 135:12956 Wittman JM, Hayoun R, Kaminsky W, Coggins MK, Mayer JM (2013) J Am Chem Soc 135:12956
121.
122.
go back to reference Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Science 314:1124 Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Science 314:1124
123.
124.
go back to reference Mömming CM, Frömel S, Kehr G, Fröhlich R, Grimme S, Erker G (2009) J Am Chem Soc 131:12280 Mömming CM, Frömel S, Kehr G, Fröhlich R, Grimme S, Erker G (2009) J Am Chem Soc 131:12280
125.
go back to reference Sajid M, Elmer LM, Rosorius C, Daniliuc CG, Grimme S, Kehr G, Erker G (2013) Angew Chem Int Ed 52:2243 Sajid M, Elmer LM, Rosorius C, Daniliuc CG, Grimme S, Kehr G, Erker G (2013) Angew Chem Int Ed 52:2243
126.
go back to reference Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan D, Erker G (2009) Angew Chem Int Ed 48:6643 Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan D, Erker G (2009) Angew Chem Int Ed 48:6643
127.
go back to reference Cardenas AJP, Culotta BJ, Warren TH, Grimme S, Stute A, Fröhlich R, Kehr G, Erker G (2011) Angew Chem Int Ed 50:7567 Cardenas AJP, Culotta BJ, Warren TH, Grimme S, Stute A, Fröhlich R, Kehr G, Erker G (2011) Angew Chem Int Ed 50:7567
128.
go back to reference Rokob TA, Hamza A, Pápai I (2009) J Am Chem Soc 131:10701 Rokob TA, Hamza A, Pápai I (2009) J Am Chem Soc 131:10701
129.
go back to reference Grimme S, Kruse H, Goerigk L, Erker G (2010) Angew Chem Int Ed 49:1402 Grimme S, Kruse H, Goerigk L, Erker G (2010) Angew Chem Int Ed 49:1402
130.
go back to reference Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Angew Chem Int Ed 47:2435 Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Angew Chem Int Ed 47:2435
131.
go back to reference Rokob TA, Bakó I, Stirling A, Hamza A, Pápai I (2013) J Am Chem Soc 135:4425 Rokob TA, Bakó I, Stirling A, Hamza A, Pápai I (2013) J Am Chem Soc 135:4425
132.
go back to reference Pu M, Privalov T (2013) J Chem Phys 138:154305 Pu M, Privalov T (2013) J Chem Phys 138:154305
133.
go back to reference Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656 Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656
134.
go back to reference Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215 Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215
Metadata
Title
Accurate Thermochemistry for Large Molecules with Modern Density Functionals
Authors
Marc Steinmetz
Andreas Hansen
Stephan Ehrlich
Tobias Risthaus
Stefan Grimme
Copyright Year
2015
DOI
https://doi.org/10.1007/128_2014_543

Premium Partner