Skip to main content
Top

2018 | OriginalPaper | Chapter

Active Band-Stop Filter Synthesis Based on Nodal Admittance Matrix Expansion

Authors : Lingling Tan, Yunpeng Wang, Guizhen Yu

Published in: Communications, Signal Processing, and Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Active network synthesis is important for circuit designer to find new circuits with desired performance. In this paper, a synthesis method for synthesizing active band-stop filters is presented, which starts from voltage transfer function and linked infinity variables to describe nullors in both nodal admittance matrix (NAM) and port admittance matrix of the circuit to be synthesized. Then circuit topology is derived by nodal admittance matrix expansion. The Tow-Thomas band-stop filter circuit and Åkerberg-Mossberg band-stop filter circuit are synthesized by nodal admittance matrix expansion on the same port admittance matrix. A design example of band-stop filter verifies the effectiveness of the circuit design method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.G. Haigh, P. Radmore et al., Systematic synthesis method for analogue circuits - Part I Notation and synthesis toolbox, in International symposium of Circuit and System, ISCAS, vol. 1, 23–26 May 2004, pp. 701–704 D.G. Haigh, P. Radmore et al., Systematic synthesis method for analogue circuits - Part I Notation and synthesis toolbox, in International symposium of Circuit and System, ISCAS, vol. 1, 23–26 May 2004, pp. 701–704
2.
go back to reference D.G. Haigh, T.J.W. Clarke, P.M. Radmore, Symbolic framework for linear active circuits based on port equivalence using variables. Int. Symp. Circuit Syst. 53, 2011–2024 (2006)MathSciNet D.G. Haigh, T.J.W. Clarke, P.M. Radmore, Symbolic framework for linear active circuits based on port equivalence using variables. Int. Symp. Circuit Syst. 53, 2011–2024 (2006)MathSciNet
3.
go back to reference D.G. Haigh, F.Q. Tan, C. Papavassiliou, Systematic synthesis method for analogue circuits – Part III All-transistor synthesis, in International symposium of Circuit and System, ISCAS, vol. 1, 23–26 May 2004, pp. 701–712 D.G. Haigh, F.Q. Tan, C. Papavassiliou, Systematic synthesis method for analogue circuits – Part III All-transistor synthesis, in International symposium of Circuit and System, ISCAS, vol. 1, 23–26 May 2004, pp. 701–712
4.
go back to reference D.G. Haigh, F.Q. Tan, C. Papavassiliou, Systematic synthesis of active-RC circuit building-blocks. Analog Integr. Cir. Sig. Process. 43(3), 297–315 D.G. Haigh, F.Q. Tan, C. Papavassiliou, Systematic synthesis of active-RC circuit building-blocks. Analog Integr. Cir. Sig. Process. 43(3), 297–315
5.
go back to reference R.A. Saad, A.M. Soliman, Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Trans. Circuits Syst. I Reg. Papers 55(9), 2726–2735 (2008)CrossRefMathSciNet R.A. Saad, A.M. Soliman, Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Trans. Circuits Syst. I Reg. Papers 55(9), 2726–2735 (2008)CrossRefMathSciNet
6.
go back to reference A.M. Soliman, Adjoint network theorem and floating elements in the NAM. J. Circuits Syst. Comput. 18(3), 597–616 (2009)CrossRef A.M. Soliman, Adjoint network theorem and floating elements in the NAM. J. Circuits Syst. Comput. 18(3), 597–616 (2009)CrossRef
7.
go back to reference W.D. Yan, R.R. Mansour, Compact tunable bandstop filter integrated with large deflected actuators, in IEEE/MTT-S International Microwave Symposium, 3–8 June 2007, pp. 1611–1614 W.D. Yan, R.R. Mansour, Compact tunable bandstop filter integrated with large deflected actuators, in IEEE/MTT-S International Microwave Symposium, 3–8 June 2007, pp. 1611–1614
8.
go back to reference D.G. Haigh, P.M. Radmore, Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Trans. Circuits Syst. I Reg. Papers 53(10), 2214–2223 (2006) D.G. Haigh, P.M. Radmore, Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Trans. Circuits Syst. I Reg. Papers 53(10), 2214–2223 (2006)
9.
go back to reference L. Tan, K. Liu, Y. Bai, J. Teng, Construction of CDBA and CDTA behavioral models and the applications in current-mode symbolic circuits analysis. Analog Integr. Circuit Signal Process. (2013). doi:10.1007/s10470-013-0065-3 L. Tan, K. Liu, Y. Bai, J. Teng, Construction of CDBA and CDTA behavioral models and the applications in current-mode symbolic circuits analysis. Analog Integr. Circuit Signal Process. (2013). doi:10.​1007/​s10470-013-0065-3
10.
go back to reference H.Y. Wang, W.C. Huang, N.H. Chiang, Symbolic nodal analysis of circuits using pathological elements. IEEE Trans. Circuits Syst. II 57(11), 874–877 (2010) H.Y. Wang, W.C. Huang, N.H. Chiang, Symbolic nodal analysis of circuits using pathological elements. IEEE Trans. Circuits Syst. II 57(11), 874–877 (2010)
11.
go back to reference Sanchez-Lopez, Fernandez, Tlelo-Cuautle, Tan, Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. 58, 1382–1395 (2011) Sanchez-Lopez, Fernandez, Tlelo-Cuautle, Tan, Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. 58, 1382–1395 (2011)
12.
go back to reference L. Tan, Y. Bai, J. Teng, K. Liu, W. Meng, Trans-impedance filter synthesis based on nodal admittance matrix expansion. Circuits Syst. Signal Process. (2012). doi:10.1007/s00034-012-9514-y L. Tan, Y. Bai, J. Teng, K. Liu, W. Meng, Trans-impedance filter synthesis based on nodal admittance matrix expansion. Circuits Syst. Signal Process. (2012). doi:10.​1007/​s00034-012-9514-y
13.
go back to reference D.G. Haigh, Symbolic active-RC circuit synthesis by admittance matrix expansion. IEEE Trans. Circuits Syst. I Reg. Papers 1, 248–251 (2005) D.G. Haigh, Symbolic active-RC circuit synthesis by admittance matrix expansion. IEEE Trans. Circuits Syst. I Reg. Papers 1, 248–251 (2005)
14.
go back to reference D.G. Haigh, A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Trans. Circuits Syst. I Reg. Papers 53(12), 2715–2728 (2006)CrossRefMathSciNet D.G. Haigh, A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Trans. Circuits Syst. I Reg. Papers 53(12), 2715–2728 (2006)CrossRefMathSciNet
Metadata
Title
Active Band-Stop Filter Synthesis Based on Nodal Admittance Matrix Expansion
Authors
Lingling Tan
Yunpeng Wang
Guizhen Yu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3229-5_62