Skip to main content
Top
Published in: Wireless Personal Communications 4/2014

01-04-2014

Adaptive Generator Sequence Selection in Multilevel Space–Time Trellis Codes

Authors: Dharmvir Jain, Sanjay Sharma

Published in: Wireless Personal Communications | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It has been shown that multilevel space–time trellis codes (MLSTTCs) designed by combining multilevel coding (MLC) with space–time trellis codes (STTCs) can provide improvement in diversity gain and coding gain of the STTCs. MLSTTCs assume perfect channel state information (CSI) at receiver and no knowledge of CSI at transmitter. Weighted multilevel space–time trellis codes (WMLSTTCs), designed by combining MLSTTCs and perfect CSI at transmitter are capable of providing improvement in coding gain of MLSTTCs. In this paper, we present improvement in performance of MLSTTCs by using channel feedback information from the receiver for adaptive selection of generator sequences. The selected generator sequences are used for encoding the component STTCs. The receiver compares current channel profile at receiver with a set of predetermined channel profiles, and sends an index of a predefined channel profile closest to the current channel profile to the transmitter. The transmitter selects a code set that matches best with the current channel profile at receiver using the index. The selected code set having different sets of generator sequences is used by STTC encoders to generate dynamic space–time trellis codes (DSTTCs). The DSTTCs act as component codes in multilevel coding for generating new codes henceforth referred to as multilevel dynamic space–time trellis codes (MLDSTTCs). Analysis and simulation results show that MLDSTTCs provide improvement in performance over MLSTTCs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.CrossRefMATHMathSciNet Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.CrossRefMATHMathSciNet
2.
go back to reference Hammons, A. R., & Gammal, H. E. (2000). On the theory of space time codes for PSK modulation. IEEE Transactions on Information Theory, 46(2), 524–542.CrossRefMATH Hammons, A. R., & Gammal, H. E. (2000). On the theory of space time codes for PSK modulation. IEEE Transactions on Information Theory, 46(2), 524–542.CrossRefMATH
3.
go back to reference El Gamal, H., & Hammons, A. R., Jr. (2001). Algebraic space time codes for block fading channel. IEEE International Symposium on Information Theory, 152. El Gamal, H., & Hammons, A. R., Jr. (2001). Algebraic space time codes for block fading channel. IEEE International Symposium on Information Theory, 152.
4.
go back to reference Li, Y., & Vucetic, B. (2005). Combined space time trellis codes and beamforming on fast fading channels. Vehicular Technology Conference, 2, 1181–1185. Li, Y., & Vucetic, B. (2005). Combined space time trellis codes and beamforming on fast fading channels. Vehicular Technology Conference, 2, 1181–1185.
5.
go back to reference Zhou, S., & Giannakis, G. (2002). Optimal transmitter eigen-beamforming and space–time block coding based on channel mean feedback. IEEE Transactions on Signal Processing, 50, 2599–2613.CrossRef Zhou, S., & Giannakis, G. (2002). Optimal transmitter eigen-beamforming and space–time block coding based on channel mean feedback. IEEE Transactions on Signal Processing, 50, 2599–2613.CrossRef
6.
go back to reference Liu, J., & Jafarkhani, H. (2003). Combining beam forming and quasi-orthogonal space–time block coding using channel mean feedback. Proceeding in IEEE Global Telecommunications Conference (GLOBECOM), 4, 1925–1930. Liu, J., & Jafarkhani, H. (2003). Combining beam forming and quasi-orthogonal space–time block coding using channel mean feedback. Proceeding in IEEE Global Telecommunications Conference (GLOBECOM), 4, 1925–1930.
7.
go back to reference Zhou, S., & Giannakis, G. (2003). Optimal transmitter eigen-beam forming and space–time block coding based on channel correlations. IEEE Transactions on Information Theory, 49, 1673–1690.CrossRefMathSciNet Zhou, S., & Giannakis, G. (2003). Optimal transmitter eigen-beam forming and space–time block coding based on channel correlations. IEEE Transactions on Information Theory, 49, 1673–1690.CrossRefMathSciNet
8.
go back to reference Jongren, G., Skoglund, M., & Ottersten, B. (2002). Combining beam forming and orthogonal space–time block coding. IEEE Transactions on Information Theory, 48, 611–627.CrossRef Jongren, G., Skoglund, M., & Ottersten, B. (2002). Combining beam forming and orthogonal space–time block coding. IEEE Transactions on Information Theory, 48, 611–627.CrossRef
9.
go back to reference Li, Y., Vucetic, B., Santoso, A., & Chen, Z. (2003). Space time trellis codes with adaptive weighting. Electronics Letters, 39, 1833–1834.CrossRef Li, Y., Vucetic, B., Santoso, A., & Chen, Z. (2003). Space time trellis codes with adaptive weighting. Electronics Letters, 39, 1833–1834.CrossRef
10.
go back to reference Liu, L., & Jafarkhani, H. (2006). Space–time trellis codes based on channel-phase feedback. IEEE Transactions on communications, 54(12), 2186–2198.CrossRef Liu, L., & Jafarkhani, H. (2006). Space–time trellis codes based on channel-phase feedback. IEEE Transactions on communications, 54(12), 2186–2198.CrossRef
11.
go back to reference Dimas, M. T., & Torres, R. P. (2008). Space–time code selection for transmit antenna diversity systems. IEEE Transactions on Vehicular Technology, 57(1), 620–629.CrossRef Dimas, M. T., & Torres, R. P. (2008). Space–time code selection for transmit antenna diversity systems. IEEE Transactions on Vehicular Technology, 57(1), 620–629.CrossRef
13.
go back to reference Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRefMATH Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRefMATH
14.
15.
go back to reference Ma, Shang-Chih, & Lin, Chia-Hao. (2010). Multilevel concatenated space–time block codes. IEICE Transactions on Fundamentals of Electronics, Communications and, Computer, E93–A(10), 1845–1847.CrossRef Ma, Shang-Chih, & Lin, Chia-Hao. (2010). Multilevel concatenated space–time block codes. IEICE Transactions on Fundamentals of Electronics, Communications and, Computer, E93–A(10), 1845–1847.CrossRef
17.
go back to reference Baghaie, A. M., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space–time trellis codes. IEEE Communications Letters, 14(3), 232–234. Baghaie, A. M., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space–time trellis codes. IEEE Communications Letters, 14(3), 232–234.
18.
go back to reference Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.CrossRefMATHMathSciNet Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.CrossRefMATHMathSciNet
19.
go back to reference Khaled, F. (1993). Combined multilevel coding and multiresolution modulation. IEEE International Conference on Technical Program, 2, 1081–1085. Khaled, F. (1993). Combined multilevel coding and multiresolution modulation. IEEE International Conference on Technical Program, 2, 1081–1085.
Metadata
Title
Adaptive Generator Sequence Selection in Multilevel Space–Time Trellis Codes
Authors
Dharmvir Jain
Sanjay Sharma
Publication date
01-04-2014
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2014
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-013-1440-1

Other articles of this Issue 4/2014

Wireless Personal Communications 4/2014 Go to the issue