Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Additive Manufacturing of Funtionally Graded Materials

Authors : Rasheedat Modupe Mahamood, Esther Titilayo Akinlabi

Published in: Functionally Graded Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Functionally graded materials (FGMs) are advanced materials that are used to prevent the problems that arise when composite materials with sharp interfaces are used in a harsh working environment, which includes stress singularities due to property mismatchs, poor adhesion, and delamination. A number of conventional manufacturing processes have been used to produce functionally graded materials and some of these manufacturing processes were presented in Chap. 3. Additive manufacturing (AM) technology is an advanced manufacturing process that offers many advantages and possibilities for the fabrication of complex three-dimensional products through material addition, as against the material removal in the conventional machining processes. Some of the AM technologies have the capability of fabricating complex parts that are made with the functionally graded material (FGM) in a single manufacturing process. Some of the AM technologies that are used to produce functional FGM parts include: selective-laser sintering, selective-laser melting, the laser-metal deposition process, and fused-deposition modelling. These AM technologies are presented in this chapter; and some of the research work using these technologies for the fabrication of FGMs are also reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Mahamood, R.M., Akinlabi, E.T.: Achieving mass customization through additive manufacturing. In: Schlick, C., Trzcieliński, S. (eds.) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. Springer International Publishing Switzerland, pp. 385–390 (2016) Mahamood, R.M., Akinlabi, E.T.: Achieving mass customization through additive manufacturing. In: Schlick, C., Trzcieliński, S. (eds.) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. Springer International Publishing Switzerland, pp. 385–390 (2016)
3.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Evolutionary additive manufacturing: an overview. Lasers in Engineering 27, 161–178 (2014) Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Evolutionary additive manufacturing: an overview. Lasers in Engineering 27, 161–178 (2014)
4.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Functionally graded material: an overview. In: Proceedings of the World Congress on Engineering, vol. III, pp. 1593–1597, WCE 2012, July 4–6, 2012, London, U.K. (2012) Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Functionally graded material: an overview. In: Proceedings of the World Congress on Engineering, vol. III, pp. 1593–1597, WCE 2012, July 4–6, 2012, London, U.K. (2012)
5.
go back to reference Jacobs, P.F.: Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. SME Publication, Dearborn (1992) Jacobs, P.F.: Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. SME Publication, Dearborn (1992)
6.
go back to reference Gibson, I., Rosen, D.W., Stucker, B.: Additive manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, 1st edn. Springer, New York (2010) Gibson, I., Rosen, D.W., Stucker, B.: Additive manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, 1st edn. Springer, New York (2010)
7.
go back to reference Sachs, M. E., Haggerty, J.S., Cima, M.J., Williams, P.A.: Three-Dimensional printing Techniques. US Patent, 5204055 (1993) Sachs, M. E., Haggerty, J.S., Cima, M.J., Williams, P.A.: Three-Dimensional printing Techniques. US Patent, 5204055 (1993)
8.
go back to reference Comb, J.W., Priedeman, W.R., Turley, P.W.: FDM technology-process improvements. In: Proceedings of Solid Freeform Fabrication Symposium, pp. 42–49. Austin, TX Comb, J.W., Priedeman, W.R., Turley, P.W.: FDM technology-process improvements. In: Proceedings of Solid Freeform Fabrication Symposium, pp. 42–49. Austin, TX
9.
go back to reference Beaman, J.J., Barlow, J.W., Bourell, D.L., Barlow, J.W., Crawford, R.H., McAlea, K.P.: Solid Freeform Fabrication: A New Direction in Manufacturing, pp. 25–49. Kluwer Academic Publishers, Norwell (1997)CrossRef Beaman, J.J., Barlow, J.W., Bourell, D.L., Barlow, J.W., Crawford, R.H., McAlea, K.P.: Solid Freeform Fabrication: A New Direction in Manufacturing, pp. 25–49. Kluwer Academic Publishers, Norwell (1997)CrossRef
10.
go back to reference Feygin, M., Hsieh, B.: Laminated Object Manufacturing (LOM): A Simpler Process. In: Proceedings of Solid Freeform Fabrication Symposium (pp. 123–130). Austin, TX (1991) Feygin, M., Hsieh, B.: Laminated Object Manufacturing (LOM): A Simpler Process. In: Proceedings of Solid Freeform Fabrication Symposium (pp. 123–130). Austin, TX (1991)
11.
go back to reference Mazumder, J., Schifferer, A., Choi, J.: Direct materials deposition: designed macro- and micro-structures. Mater. Res. Innovations 3(3), 118–131 (1999) Mazumder, J., Schifferer, A., Choi, J.: Direct materials deposition: designed macro- and micro-structures. Mater. Res. Innovations 3(3), 118–131 (1999)
13.
go back to reference Ahn, S.-H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused-deposition modelling ABS. Rapid Prototyping 8(4), 248–257 (2002)CrossRef Ahn, S.-H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused-deposition modelling ABS. Rapid Prototyping 8(4), 248–257 (2002)CrossRef
14.
go back to reference Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical properties of fused-deposition modelling processed parts. Mater. Des. 31, 287–295 (2010)CrossRef Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical properties of fused-deposition modelling processed parts. Mater. Des. 31, 287–295 (2010)CrossRef
15.
go back to reference Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Processes 15(1), 107–122 (2000)CrossRef Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Processes 15(1), 107–122 (2000)CrossRef
16.
go back to reference Galantucci, L.M., Lavecchia, F., Percoco, G.: Study of compression properties of topologically optimized FDM-made structured parts. Manuf. Technol 57, 243–246 (2008)CrossRef Galantucci, L.M., Lavecchia, F., Percoco, G.: Study of compression properties of topologically optimized FDM-made structured parts. Manuf. Technol 57, 243–246 (2008)CrossRef
17.
go back to reference Huang, T., Mason, M.S., Hilmas, G.E., Leu, M.C.: Freeze-Form extrusion fabrication of ceramic parts. Int. J Virtual Phys Prototyping 1(2), 93–100 (2006)CrossRef Huang, T., Mason, M.S., Hilmas, G.E., Leu, M.C.: Freeze-Form extrusion fabrication of ceramic parts. Int. J Virtual Phys Prototyping 1(2), 93–100 (2006)CrossRef
18.
go back to reference Mason, M.S., Huang, T., Landers, R.G., Leu, M.C., Hilmas, G.E.: Aqueous-based extrusion of high solids loading ceramic pastes: process modelling and control. J. Mater. Process. Technol. 209(6), 2946–2957 (2009)CrossRef Mason, M.S., Huang, T., Landers, R.G., Leu, M.C., Hilmas, G.E.: Aqueous-based extrusion of high solids loading ceramic pastes: process modelling and control. J. Mater. Process. Technol. 209(6), 2946–2957 (2009)CrossRef
19.
go back to reference Huang, T., Mason, M.S., Hilmas, G.E., Leu, M.C.: Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping J. 15(2), 88–95 (2009)CrossRef Huang, T., Mason, M.S., Hilmas, G.E., Leu, M.C.: Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping J. 15(2), 88–95 (2009)CrossRef
20.
go back to reference Zhao, X., Landers, R.G., Leu, M.C.: Adaptive extrusion force control of freeze-form extrusion fabrication processes. ASME J. Manuf. Sci. Eng. 132(6) Zhao, X., Landers, R.G., Leu, M.C.: Adaptive extrusion force control of freeze-form extrusion fabrication processes. ASME J. Manuf. Sci. Eng. 132(6)
21.
go back to reference Doiphode, N.D., Huang, T., Leu, M.C., Rahaman, M.N., Day, D.E.: Freeze-Extrusion fabrication of 13-93 Bioactive glass scaffolds for bone repair. J. Mater. Sci. Mater. Med. 22(3), 515–523 (2011)CrossRef Doiphode, N.D., Huang, T., Leu, M.C., Rahaman, M.N., Day, D.E.: Freeze-Extrusion fabrication of 13-93 Bioactive glass scaffolds for bone repair. J. Mater. Sci. Mater. Med. 22(3), 515–523 (2011)CrossRef
22.
go back to reference Leu, M.C., Deuser, B.K., Tang, L., Landers, R.G., Hilmas, G.E. Watts, J.L.: Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann. Manuf. Technol. 61(1), 223–226 Leu, M.C., Deuser, B.K., Tang, L., Landers, R.G., Hilmas, G.E. Watts, J.L.: Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann. Manuf. Technol. 61(1), 223–226
23.
go back to reference Srivastava, M., Maheshwari, S., Kundra, T.K.: Virtual modelling and simulation of functionally graded material components using FDM technique. Mater. Today Proc 2(4–5), 3471–3480 (2015)CrossRef Srivastava, M., Maheshwari, S., Kundra, T.K.: Virtual modelling and simulation of functionally graded material components using FDM technique. Mater. Today Proc 2(4–5), 3471–3480 (2015)CrossRef
24.
go back to reference Li, L., Sun, Q., Bellehumeur, C., Gu, P.: Composite modelling and analysis for fabrication of FDM prototypes with locally controlled properties. J. Manuf. Processes 4(2) (2002) Li, L., Sun, Q., Bellehumeur, C., Gu, P.: Composite modelling and analysis for fabrication of FDM prototypes with locally controlled properties. J. Manuf. Processes 4(2) (2002)
25.
go back to reference Wang, P., Tan, X., Nai, M.L.S., Tor, S.B., Wei, J.: Spatial and geometrical-based characterization of microstructure and microhardness for an electron-beam melted Ti–6Al–4V component. Mater. Des. 95, 287–295 (2016) Wang, P., Tan, X., Nai, M.L.S., Tor, S.B., Wei, J.: Spatial and geometrical-based characterization of microstructure and microhardness for an electron-beam melted Ti–6Al–4V component. Mater. Des. 95, 287–295 (2016)
26.
go back to reference Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, l.E., Wicker, R.B.: Joining of Inconel 718 and 316 stainless steel using electron-beam melting additive-manufacturing technology. Mater. Des. 94, 17–27 Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, l.E., Wicker, R.B.: Joining of Inconel 718 and 316 stainless steel using electron-beam melting additive-manufacturing technology. Mater. Des. 94, 17–27
27.
go back to reference Tan, X., Kok, Y., Tan, Y.J., Vastola, G., Pei, Q.S., Zhang, G., Zhang, Y-W., Tor, S. B., Leong, K. F., Chua, C.K.: An experimental and simulation study on build thickness-dependent microstructure for electron-beam melted Ti–6Al–4V. J. Alloys Compd. 646, 303–309 (2015) Tan, X., Kok, Y., Tan, Y.J., Vastola, G., Pei, Q.S., Zhang, G., Zhang, Y-W., Tor, S. B., Leong, K. F., Chua, C.K.: An experimental and simulation study on build thickness-dependent microstructure for electron-beam melted Ti–6Al–4V. J. Alloys Compd. 646, 303–309 (2015)
28.
go back to reference Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F., Chua, C.K.: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron-beam melting. Acta Mater. 97, 1–16 (2015)CrossRef Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F., Chua, C.K.: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron-beam melting. Acta Mater. 97, 1–16 (2015)CrossRef
29.
go back to reference Ardila, L.C., Garciandia, F., Gonzalez-Diaz, J.B., Alvarez, P., Echeverria, A., Petite, M.M., et al.: Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. In: Physics Procedia of the 8th International Conference on Photonic Technologies LANE, vol. 56, pp. 99–107 Ardila, L.C., Garciandia, F., Gonzalez-Diaz, J.B., Alvarez, P., Echeverria, A., Petite, M.M., et al.: Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. In: Physics Procedia of the 8th International Conference on Photonic Technologies LANE, vol. 56, pp. 99–107
30.
go back to reference Seyda, V., Kaufmann, N., Emmelmann, C.: (2012). Investigation of aging processes of Ti–6Al–4V powder material in laser melting. In: Physics Procedia of the 7th International Conference & Exhibition on Photonic Technologies LANE, vol. 39, pp. 425–31 Seyda, V., Kaufmann, N., Emmelmann, C.: (2012). Investigation of aging processes of Ti–6Al–4V powder material in laser melting. In: Physics Procedia of the 7th International Conference & Exhibition on Photonic Technologies LANE, vol. 39, pp. 425–31
31.
go back to reference Yan, M., Zhou, C., Tian, X., Peng, G., Cao, Y., Li, D.: Design and selective laser sintering of complex porous polyamide mould for pressure-slip casting. Mater. Des. 111, 198–205 (2016) Yan, M., Zhou, C., Tian, X., Peng, G., Cao, Y., Li, D.: Design and selective laser sintering of complex porous polyamide mould for pressure-slip casting. Mater. Des. 111, 198–205 (2016)
32.
go back to reference Salmoria, G.V., Cardenuto, M.R., Roesler, C.R.M., Zepon, K.M., Kanis, L.A.: PCL/Ibuprofen implants fabricated by selective laser sintering for orbital repair. Procedia CIRP 49, 188–192 (2016)CrossRef Salmoria, G.V., Cardenuto, M.R., Roesler, C.R.M., Zepon, K.M., Kanis, L.A.: PCL/Ibuprofen implants fabricated by selective laser sintering for orbital repair. Procedia CIRP 49, 188–192 (2016)CrossRef
33.
go back to reference Du, Y., Liu, H., Shuang, J., Wang, J., Ma, J., Zhang, S.: Microsphere-based selective laser sintering for building macro-porous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf. B 135, 81–89 (2015)CrossRef Du, Y., Liu, H., Shuang, J., Wang, J., Ma, J., Zhang, S.: Microsphere-based selective laser sintering for building macro-porous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf. B 135, 81–89 (2015)CrossRef
34.
go back to reference Chung, H., Das, S.: Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng. A 487(1–2), 251–257 (2008)CrossRef Chung, H., Das, S.: Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng. A 487(1–2), 251–257 (2008)CrossRef
35.
go back to reference Chung, H., Das, S.: Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)CrossRef Chung, H., Das, S.: Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)CrossRef
36.
go back to reference Ahmadi, A., Mirzaeifar, R., Moghaddam, N.S., Turabi, A.S., Karaca, H.E., Elahinia, M.: Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework. Mater. Des. 112, 328–338 (2016) Ahmadi, A., Mirzaeifar, R., Moghaddam, N.S., Turabi, A.S., Karaca, H.E., Elahinia, M.: Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework. Mater. Des. 112, 328–338 (2016)
37.
go back to reference Pawlak, N., Rosienkiewicz, M., Chlebus, E.: Design of experiments approach in AZ31 powder selective laser-melting process optimization. Arch Civ. Mech. Eng. 17, 9–18 (2017)CrossRef Pawlak, N., Rosienkiewicz, M., Chlebus, E.: Design of experiments approach in AZ31 powder selective laser-melting process optimization. Arch Civ. Mech. Eng. 17, 9–18 (2017)CrossRef
38.
go back to reference Matsumoto, R., Kanatani, S., Utsunomiya, H.: Filling of surface pores of aluminum foam with polyamide by selective laser melting for improvement in mechanical properties. J. Mater. Process. Technol. 237, 402–408 (2016)CrossRef Matsumoto, R., Kanatani, S., Utsunomiya, H.: Filling of surface pores of aluminum foam with polyamide by selective laser melting for improvement in mechanical properties. J. Mater. Process. Technol. 237, 402–408 (2016)CrossRef
39.
go back to reference Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A., Wildman, R.D., Hague, R.J.M.: A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 670, 264–274 (2016)CrossRef Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A., Wildman, R.D., Hague, R.J.M.: A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 670, 264–274 (2016)CrossRef
40.
go back to reference Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)CrossRef Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)CrossRef
41.
go back to reference Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technology—Rapid Prototyping to Direct Digital Manufacturing. Springer, New York (2010) Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technology—Rapid Prototyping to Direct Digital Manufacturing. Springer, New York (2010)
43.
go back to reference Hiemenz, J.: Electron-beam melting. Adv. Mater. Processes, pp. 45–46 (2007) Hiemenz, J.: Electron-beam melting. Adv. Mater. Processes, pp. 45–46 (2007)
44.
go back to reference Ruttert, B., Ramsperger, M., Roncery, L.M., Lopez-Galilea, I., Körner, C., Theisen, W.: Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron-beam melting. Mater. Des. 110, 720–727 (2016) Ruttert, B., Ramsperger, M., Roncery, L.M., Lopez-Galilea, I., Körner, C., Theisen, W.: Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron-beam melting. Mater. Des. 110, 720–727 (2016)
45.
go back to reference Fiaz, Hasan S., Settle, Casey R., Hoshino, Kazunori: Metal-additive manufacturing for micro-electro-mechanical systems: Titanium alloy (Ti–6Al–4V)-based nanopositioning flexure fabricated by electron-beam melting. Sens. Actuators A 249(1), 284–293 (2016)CrossRef Fiaz, Hasan S., Settle, Casey R., Hoshino, Kazunori: Metal-additive manufacturing for micro-electro-mechanical systems: Titanium alloy (Ti–6Al–4V)-based nanopositioning flexure fabricated by electron-beam melting. Sens. Actuators A 249(1), 284–293 (2016)CrossRef
46.
go back to reference Algardh, J.K., Horn, T., West, H., Aman, R., Snis, A. Engqvist, H., Lausmaa, J., Harrysson, O.: Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron-Beam Melting (EBM)®. Addit. Manuf. 12, Part A, 45–50 Algardh, J.K., Horn, T., West, H., Aman, R., Snis, A. Engqvist, H., Lausmaa, J., Harrysson, O.: Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron-Beam Melting (EBM)®. Addit. Manuf. 12, Part A, 45–50
47.
go back to reference Portolés, L., Jordá, O., Jordá, L., Uriondo, A., Esperon-Miguez, M., Perinpanayagam, S.: A qualification procedure to manufacture and repair aerospace parts with electron-beam melting. J. Manuf. Syst. 41, 65–75 (2016)CrossRef Portolés, L., Jordá, O., Jordá, L., Uriondo, A., Esperon-Miguez, M., Perinpanayagam, S.: A qualification procedure to manufacture and repair aerospace parts with electron-beam melting. J. Manuf. Syst. 41, 65–75 (2016)CrossRef
48.
go back to reference Yan, W., Ge, W., Smith, J., Lin, S., Kafka, O.L., Lin, F., Liu, W.K.: Multi-scale modelling of electron-beam melting of functionally graded materials. Acta Mater. 115, 403–412 (2016)CrossRef Yan, W., Ge, W., Smith, J., Lin, S., Kafka, O.L., Lin, F., Liu, W.K.: Multi-scale modelling of electron-beam melting of functionally graded materials. Acta Mater. 115, 403–412 (2016)CrossRef
49.
go back to reference Trainia, T., Mangano, 1, C., Sammons, R.L., Mangano, F., Macchib, A., Piattelli, A.: Direct laser-metal sintering as a new approach to fabrication of an isoelastic functionally graded material for the manufacture of porous titanium dental implants. Dent. Mater. 24, 1525–1533 (2008) Trainia, T., Mangano, 1, C., Sammons, R.L., Mangano, F., Macchib, A., Piattelli, A.: Direct laser-metal sintering as a new approach to fabrication of an isoelastic functionally graded material for the manufacture of porous titanium dental implants. Dent. Mater. 24, 1525–1533 (2008)
50.
go back to reference Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T.: Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedrals for functionally graded scaffolds. Acta Biomater. 7, 530–537 (2011)CrossRef Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T.: Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedrals for functionally graded scaffolds. Acta Biomater. 7, 530–537 (2011)CrossRef
51.
go back to reference Hazlehurst, K.B., Wang, C.J., Stanford, M.: An investigation into the flexural characteristics of functionally graded cobalt-chrome femoral stems manufactured using selective-laser melting. Mater. Des. 60, 177–183 (2014)CrossRef Hazlehurst, K.B., Wang, C.J., Stanford, M.: An investigation into the flexural characteristics of functionally graded cobalt-chrome femoral stems manufactured using selective-laser melting. Mater. Des. 60, 177–183 (2014)CrossRef
52.
go back to reference Dumont, A-L., Bonnet, J-P., Chartier, T., Ferreira, J.M.F.: MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. J. Eur. Ceram. Soc. 21, 2353–2360 (2001) Dumont, A-L., Bonnet, J-P., Chartier, T., Ferreira, J.M.F.: MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. J. Eur. Ceram. Soc. 21, 2353–2360 (2001)
53.
go back to reference Pinkerton, A.J., Wang, W., Li, L.: Component repair using laser direct-metal deposition. J. Eng. Manuf. 222, 827–836 (2008)CrossRef Pinkerton, A.J., Wang, W., Li, L.: Component repair using laser direct-metal deposition. J. Eng. Manuf. 222, 827–836 (2008)CrossRef
54.
go back to reference Graf, B., Gumenyuk, A., Rethmeier, M.: Laser-metal deposition as repair technology for stainless steel and Titanium alloys. Phys. Procedia 39, 376–381 (2012)CrossRef Graf, B., Gumenyuk, A., Rethmeier, M.: Laser-metal deposition as repair technology for stainless steel and Titanium alloys. Phys. Procedia 39, 376–381 (2012)CrossRef
55.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla M., Pityana, S.: Functionally graded material: an overview. Proc. World Congr. Eng. WCE 3, 1593–1597 (2012) Mahamood, R.M., Akinlabi, E.T., Shukla M., Pityana, S.: Functionally graded material: an overview. Proc. World Congr. Eng. WCE 3, 1593–1597 (2012)
56.
go back to reference Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84, 402–410 (2015) Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84, 402–410 (2015)
57.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: scanning velocity influence on microstructure, microhardness and wear-resistance performance on laser-deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656–666 (2013)CrossRef Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: scanning velocity influence on microstructure, microhardness and wear-resistance performance on laser-deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656–666 (2013)CrossRef
58.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Characterizing the effect of laser-power density on microstructure, microhardness and surface finish of laser-deposited titanium alloy. J. Manuf. Sci. Eng. 135(6), doi:10.1115/1.4025737 (2013) Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Characterizing the effect of laser-power density on microstructure, microhardness and surface finish of laser-deposited titanium alloy. J. Manuf. Sci. Eng. 135(6), doi:10.​1115/​1.​4025737 (2013)
59.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Effect of laser power on material efficiency, layer height and width of laser-metal deposited Ti6Al4V, pp. 1433–1438. World Congress of Engineering and Computer Science, San Francisco (2012) Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Effect of laser power on material efficiency, layer height and width of laser-metal deposited Ti6Al4V, pp. 1433–1438. World Congress of Engineering and Computer Science, San Francisco (2012)
60.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Characterization of laser-deposited Ti6A4V/TiC composite. Lasers Eng. 29(3–4), 197–213 (2014) Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Characterization of laser-deposited Ti6A4V/TiC composite. Lasers Eng. 29(3–4), 197–213 (2014)
61.
go back to reference Milewski, J.O., Lewis, G.K., Thoma, D.J., Keel, G.I., Nemec, R.B., Reinert, R.A.: Directed-light fabrication of a solid metal hemisphere using 5-axis powder deposition. J. Mater. Process. Technol. 75, 165–172 (1998)CrossRef Milewski, J.O., Lewis, G.K., Thoma, D.J., Keel, G.I., Nemec, R.B., Reinert, R.A.: Directed-light fabrication of a solid metal hemisphere using 5-axis powder deposition. J. Mater. Process. Technol. 75, 165–172 (1998)CrossRef
62.
go back to reference Carroll, B.E., Otis, R.A., Borgonia, J.P., Suh, J.-O., Dillon, R.P., Shapiro, A.A., Hofmann, D.C., Liu, Z.-K., Beese, A.M.: Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed-energy deposition: characterization and thermodynamic modelling. Acta Mater. 108, 46–54 (2016)CrossRef Carroll, B.E., Otis, R.A., Borgonia, J.P., Suh, J.-O., Dillon, R.P., Shapiro, A.A., Hofmann, D.C., Liu, Z.-K., Beese, A.M.: Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed-energy deposition: characterization and thermodynamic modelling. Acta Mater. 108, 46–54 (2016)CrossRef
63.
go back to reference Shah, K., Haq, I.U., Khan, A., Shah, S.A., Khan, M., Pinkerton, A.J.: Parametric study of development of inconel-steel functionally graded materials by laser direct-metal deposition. Mater. Des. 54, 531–538 (2014) Shah, K., Haq, I.U., Khan, A., Shah, S.A., Khan, M., Pinkerton, A.J.: Parametric study of development of inconel-steel functionally graded materials by laser direct-metal deposition. Mater. Des. 54, 531–538 (2014)
64.
go back to reference Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84(5), 402–410 (2015) Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84(5), 402–410 (2015)
65.
go back to reference Balla, V.K., DeVasConCellos, P.D., Xue, W., Bose, S., Bandyopadhyay, A.: Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser-engineered net shaping (LENS). Acta Biomater. 5, 1831–1837 (2009)CrossRef Balla, V.K., DeVasConCellos, P.D., Xue, W., Bose, S., Bandyopadhyay, A.: Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser-engineered net shaping (LENS). Acta Biomater. 5, 1831–1837 (2009)CrossRef
66.
go back to reference Durejko, T., Ziętala, M., Polkowski, W., Czujko, T.: Thin-wall tubes with Fe3Al/SS316L graded structure obtained by using laser-engineered net-shaping technology. Mater. Des. 63, 766–774 (2014)CrossRef Durejko, T., Ziętala, M., Polkowski, W., Czujko, T.: Thin-wall tubes with Fe3Al/SS316L graded structure obtained by using laser-engineered net-shaping technology. Mater. Des. 63, 766–774 (2014)CrossRef
67.
68.
go back to reference Klosterman, D.A., Chartoff, R.P., Osborne, N.R., Graves, G.A., Lightman, A., Han, G., Bezeredi, A., Rodrigues, S.: Curved layer LOM of ceramics and composites. In: Proceedings of the 1998 Solid Freeform Fabrication Symposium, pp. 671–680 (1998) Klosterman, D.A., Chartoff, R.P., Osborne, N.R., Graves, G.A., Lightman, A., Han, G., Bezeredi, A., Rodrigues, S.: Curved layer LOM of ceramics and composites. In: Proceedings of the 1998 Solid Freeform Fabrication Symposium, pp. 671–680 (1998)
69.
go back to reference Banerjee, S.: Development of a novel toner for electrophotography-based additive manufacturing process. Ph.D. thesis, De Montlbrt University (2009) Banerjee, S.: Development of a novel toner for electrophotography-based additive manufacturing process. Ph.D. thesis, De Montlbrt University (2009)
70.
go back to reference Nakagawa, T.: Recent developments in auto-body panel forming technology. CIRP Ann. Manuf. Technol. 42(2), 1\1–121 (1993) Nakagawa, T.: Recent developments in auto-body panel forming technology. CIRP Ann. Manuf. Technol. 42(2), 1\1–121 (1993)
71.
go back to reference Nakagawa, T., Kunieda, M.: Manufacturing of laminated deep-drawing dies by laser-beam cutting. Adv. Technol. Plast. 1, 520–525 (1984) Nakagawa, T., Kunieda, M.: Manufacturing of laminated deep-drawing dies by laser-beam cutting. Adv. Technol. Plast. 1, 520–525 (1984)
72.
go back to reference Zhang, Y., Han, J., Zhang, X., He, X., Li, Z., Du, S.: Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials. Mater. Sci. Eng. A 299, 218–224 (2001)CrossRef Zhang, Y., Han, J., Zhang, X., He, X., Li, Z., Du, S.: Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials. Mater. Sci. Eng. A 299, 218–224 (2001)CrossRef
73.
go back to reference White, D.R.: Ultrasonic consolidation of aluminium tooling. Adv. Mater. Processes 64–65 (2003) White, D.R.: Ultrasonic consolidation of aluminium tooling. Adv. Mater. Processes 64–65 (2003)
74.
go back to reference Kumar, S.: Development of functionally graded materials by ultrasonic consolidation. CIRP J. Manuf. Sci. Technol. 3, 85–87 (2010)CrossRef Kumar, S.: Development of functionally graded materials by ultrasonic consolidation. CIRP J. Manuf. Sci. Technol. 3, 85–87 (2010)CrossRef
75.
go back to reference Kong, C.Y., Soar, R.C., Dickens, P.M.: Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos. Struct. 66, 421–427 (2005)CrossRef Kong, C.Y., Soar, R.C., Dickens, P.M.: Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos. Struct. 66, 421–427 (2005)CrossRef
76.
go back to reference Domack, M.S., Baughman, J.M.: Development of nickel-titanium-graded composition components. Rapid Prototyping J. 11(1), 41–51 (2005)CrossRef Domack, M.S., Baughman, J.M.: Development of nickel-titanium-graded composition components. Rapid Prototyping J. 11(1), 41–51 (2005)CrossRef
77.
go back to reference Hu, Y., Fadel, G.M., Blouin, V.Y., White, D.R.: Optimal design for additive manufacturing of heterogeneous objects using ultrasonic consolidation. Virtual Phys. Prototyping 1(1), 53–62 (2006)CrossRef Hu, Y., Fadel, G.M., Blouin, V.Y., White, D.R.: Optimal design for additive manufacturing of heterogeneous objects using ultrasonic consolidation. Virtual Phys. Prototyping 1(1), 53–62 (2006)CrossRef
78.
go back to reference White, D.R.: Ultrasonic consolidation of aluminium tooling. Adv. Mater. Processes 161, 64–65 (2003) White, D.R.: Ultrasonic consolidation of aluminium tooling. Adv. Mater. Processes 161, 64–65 (2003)
79.
go back to reference Tari, M.J., Bals, A., Park, J., Lin, M.Y., Thomas, Hahn H.: Rapid prototyping of composite parts using resin-transfer moulding and laminated-object manufacturing. Compos. Part Appl. Sci. Manuf. 29(5–6), 651–661 (1998)CrossRef Tari, M.J., Bals, A., Park, J., Lin, M.Y., Thomas, Hahn H.: Rapid prototyping of composite parts using resin-transfer moulding and laminated-object manufacturing. Compos. Part Appl. Sci. Manuf. 29(5–6), 651–661 (1998)CrossRef
80.
go back to reference Klosterman, D., Chartoff, R., Graves, G., Osborne, N., Priore, B.: Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos. Part. Appl. Sci. Manuf. 29(9–10), 1165–1174 (1998)CrossRef Klosterman, D., Chartoff, R., Graves, G., Osborne, N., Priore, B.: Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos. Part. Appl. Sci. Manuf. 29(9–10), 1165–1174 (1998)CrossRef
81.
go back to reference Jackson, T.R., Liu, H., Patrikalakis, N.M., et al.: Modelling and designing functionally graded material components for fabrication with local composition control. Mater. Des. 20(2–3), 63–75 (1999)CrossRef Jackson, T.R., Liu, H., Patrikalakis, N.M., et al.: Modelling and designing functionally graded material components for fabrication with local composition control. Mater. Des. 20(2–3), 63–75 (1999)CrossRef
82.
go back to reference Dimitrov, D., Schreve, K., De Beer, N.: Advances in three-dimensional printing—state of the art and future perspectives. Rapid Prototyping J. 12(3), 136–147 (2006)CrossRef Dimitrov, D., Schreve, K., De Beer, N.: Advances in three-dimensional printing—state of the art and future perspectives. Rapid Prototyping J. 12(3), 136–147 (2006)CrossRef
83.
go back to reference Chartoff, R., McMorrow, B., Lucas, P.: Functionally Graded Polymer-Matrix Nano-Composites by Solid Freeform Fabrication: A Preliminary Report. In: Solid Freeform Fabrication Symposium Proceedings, Austin, Texas, pp. 385–391 Chartoff, R., McMorrow, B., Lucas, P.: Functionally Graded Polymer-Matrix Nano-Composites by Solid Freeform Fabrication: A Preliminary Report. In: Solid Freeform Fabrication Symposium Proceedings, Austin, Texas, pp. 385–391
84.
go back to reference Shevchenko, A.V., Dudnik, E.V., Ruban, A.K., et al.: Functional graded materials based on ZrO2 and Al2O3 production methods. Powder Metall. Met. Ceram. 42(3–4), 145–153 (2003)CrossRef Shevchenko, A.V., Dudnik, E.V., Ruban, A.K., et al.: Functional graded materials based on ZrO2 and Al2O3 production methods. Powder Metall. Met. Ceram. 42(3–4), 145–153 (2003)CrossRef
85.
go back to reference Wang, J., Shaw, L.L.: Fabrication of functionally graded materials via inkjet colour printing. J. Am. Ceram. Soc. 89(10), 3285–3289 (2006)CrossRef Wang, J., Shaw, L.L.: Fabrication of functionally graded materials via inkjet colour printing. J. Am. Ceram. Soc. 89(10), 3285–3289 (2006)CrossRef
Metadata
Title
Additive Manufacturing of Funtionally Graded Materials
Authors
Rasheedat Modupe Mahamood
Esther Titilayo Akinlabi
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53756-6_4

Premium Partners