Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Additive Manufacturing of In Situ Metal Matrix Composites

Authors : Taban Larimian, Tushar Borkar

Published in: Additive Manufacturing of Emerging Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

While laser additive manufacturing is becoming more and more important in the context of advanced manufacturing for the future, most of the current efforts are focusing on optimizing the required parameters for processing well-matured alloys from powder feedstock to achieve reproducible properties, comparable to, or better than, their conventionally processed counterparts. However, laser additive manufacturing also opens up a new avenue in terms of processing novel alloys and composites that are difficult to process using traditional processing routes. Metal matrix composites (MMCs) are the new class of advanced materials in which rigid ceramics reinforcements exhibiting excellent strength as well as elastic modulus are embedded in a ductile metal or alloy matrix to overcome the inadequacy of metals and alloys in providing both strength and stiffness to the structure. Metal matrix composites possess excellent physical as well as mechanical properties, which makes them suitable for structural, automotive and aerospace applications. MMCs are mainly classified into two categories, ex-situ, and in-situ based on the formation of ceramic reinforcement during their processing. In situ reactions during laser additive processing takes place either between elemental blend powder or between elemental blend powder and reactive gases (e.g. nitrogen, oxygen, etc.). This chapter mainly discuss on laser additive manufacturing of in situ metal matrix composites. Laser additive processing of nickel, aluminum, and titanium matrix composites are the focus of this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. 2010. I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. 2010.
2.
go back to reference N. Guo and M. C. Leu, “Additive manufacturing: Technology, applications and research needs,” Frontiers of Mechanical Engineering, vol. 8, no. 3. pp. 215–243, 2013.CrossRef N. Guo and M. C. Leu, “Additive manufacturing: Technology, applications and research needs,” Frontiers of Mechanical Engineering, vol. 8, no. 3. pp. 215–243, 2013.CrossRef
3.
go back to reference T. Borkar et al., “A combinatorial assessment of AlxCrCuFeNi2 (0,” Acta Mater., vol. 116, pp. 63–76, 2016. T. Borkar et al., “A combinatorial assessment of AlxCrCuFeNi2 (0,” Acta Mater., vol. 116, pp. 63–76, 2016.
4.
go back to reference T. Borkar et al., “Laser-deposited in situ TiC-reinforced nickel matrix composites: 3D microstructure and tribological properties,” JOM, vol. 66, no. 6, pp. 935–942, 2014.CrossRef T. Borkar et al., “Laser-deposited in situ TiC-reinforced nickel matrix composites: 3D microstructure and tribological properties,” JOM, vol. 66, no. 6, pp. 935–942, 2014.CrossRef
5.
go back to reference T. Borkar, S. Gopagoni, S. Nag, J. Y. Hwang, P. C. Collins, and R. Banerjee, “In situ nitridation of titanium-molybdenum alloys during laser deposition,” J. Mater. Sci., vol. 47, no. 20, pp. 7157–7166, 2012.CrossRef T. Borkar, S. Gopagoni, S. Nag, J. Y. Hwang, P. C. Collins, and R. Banerjee, “In situ nitridation of titanium-molybdenum alloys during laser deposition,” J. Mater. Sci., vol. 47, no. 20, pp. 7157–7166, 2012.CrossRef
6.
go back to reference T. Borkar, R. Conteri, X. Chen, R. V. Ramanujan, and R. Banerjee, “Laser additive processing of functionally-graded Fe–Si–B–Cu–Nb soft magnetic materials,” Mater. Manuf. Process., vol. 32, no. 14, pp. 1581–1587, 2017.CrossRef T. Borkar, R. Conteri, X. Chen, R. V. Ramanujan, and R. Banerjee, “Laser additive processing of functionally-graded Fe–Si–B–Cu–Nb soft magnetic materials,” Mater. Manuf. Process., vol. 32, no. 14, pp. 1581–1587, 2017.CrossRef
7.
go back to reference C. V. Mikler et al., “Laser Additive Manufacturing of Magnetic Materials,” JOM, vol. 69, no. 3, pp. 532–543, 2017.CrossRef C. V. Mikler et al., “Laser Additive Manufacturing of Magnetic Materials,” JOM, vol. 69, no. 3, pp. 532–543, 2017.CrossRef
8.
go back to reference W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and S. S. Babu, “The metallurgy and processing science of metal additive manufacturing,” International Materials Reviews, vol. 61, no. 5. pp. 315–360, 2016.CrossRef W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and S. S. Babu, “The metallurgy and processing science of metal additive manufacturing,” International Materials Reviews, vol. 61, no. 5. pp. 315–360, 2016.CrossRef
9.
go back to reference W. E. Frazier, “Metal additive manufacturing: A review,” Journal of Materials Engineering and Performance, vol. 23, no. 6. pp. 1917–1928, 2014.CrossRef W. E. Frazier, “Metal additive manufacturing: A review,” Journal of Materials Engineering and Performance, vol. 23, no. 6. pp. 1917–1928, 2014.CrossRef
10.
go back to reference J. C. Zhao, “Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships,” Prog. Mater. Sci., vol. 51, no. 5, pp. 557–631, 2006.CrossRef J. C. Zhao, “Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships,” Prog. Mater. Sci., vol. 51, no. 5, pp. 557–631, 2006.CrossRef
11.
go back to reference S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The high-throughput highway to computational materials design,” Nat. Mater., vol. 12, no. 3, pp. 191–201, 2013.CrossRef S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The high-throughput highway to computational materials design,” Nat. Mater., vol. 12, no. 3, pp. 191–201, 2013.CrossRef
12.
go back to reference D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., vol. 57, no. 3, pp. 133–164, 2012.CrossRef D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., vol. 57, no. 3, pp. 133–164, 2012.CrossRef
13.
go back to reference P. A. Kobryn and S. L. Semiatin, “The laser additive manufacture of Ti-6Al-4V,” JOM, vol. 53, no. 9, pp. 40–42, 2001.CrossRef P. A. Kobryn and S. L. Semiatin, “The laser additive manufacture of Ti-6Al-4V,” JOM, vol. 53, no. 9, pp. 40–42, 2001.CrossRef
14.
go back to reference Y. J. Liang, D. Liu, and H. M. Wang, “Microstructure and mechanical behavior of commercial purity Ti/Ti-6Al-2Zr-1Mo-1V structurally graded material fabricated by laser additive manufacturing,” Scr. Mater., vol. 74, pp. 80–83, 2014.CrossRef Y. J. Liang, D. Liu, and H. M. Wang, “Microstructure and mechanical behavior of commercial purity Ti/Ti-6Al-2Zr-1Mo-1V structurally graded material fabricated by laser additive manufacturing,” Scr. Mater., vol. 74, pp. 80–83, 2014.CrossRef
15.
go back to reference D. C. Hofmann et al., “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res., vol. 29, no. 17, pp. 1899–1910, 2014.CrossRef D. C. Hofmann et al., “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res., vol. 29, no. 17, pp. 1899–1910, 2014.CrossRef
16.
go back to reference D. C. Hofmann et al., “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep., vol. 4, 2014. D. C. Hofmann et al., “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep., vol. 4, 2014.
17.
go back to reference T. Wohlers and T. Caffrey, Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. 2014. T. Wohlers and T. Caffrey, Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. 2014.
18.
go back to reference E. C. Santos, M. Shiomi, K. Osakada, and T. Laoui, “Rapid manufacturing of metal components by laser forming,” Int. J. Mach. Tools Manuf., vol. 46, no. 12–13, pp. 1459–1468, 2006.CrossRef E. C. Santos, M. Shiomi, K. Osakada, and T. Laoui, “Rapid manufacturing of metal components by laser forming,” Int. J. Mach. Tools Manuf., vol. 46, no. 12–13, pp. 1459–1468, 2006.CrossRef
19.
go back to reference P. Heinl, A. Rottmair, C. Körner, and R. F. Singer, “Cellular titanium by selective electron beam melting,” Adv. Eng. Mater., vol. 9, no. 5, pp. 360–364, 2007.CrossRef P. Heinl, A. Rottmair, C. Körner, and R. F. Singer, “Cellular titanium by selective electron beam melting,” Adv. Eng. Mater., vol. 9, no. 5, pp. 360–364, 2007.CrossRef
20.
go back to reference J.-P. Kruth, P. Mercelis, J. Vaerenbergh, L. Froyen, and M. Rombouts, “Binding mechanisms in selective laser sintering and selective laser melting,” Rapid Prototyp. J., vol. 11, no. 1, pp. 26–36, 2005.CrossRef J.-P. Kruth, P. Mercelis, J. Vaerenbergh, L. Froyen, and M. Rombouts, “Binding mechanisms in selective laser sintering and selective laser melting,” Rapid Prototyp. J., vol. 11, no. 1, pp. 26–36, 2005.CrossRef
21.
go back to reference I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications,” Biomaterials, vol. 23, no. 4, pp. 1169–1185, 2002.CrossRef I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications,” Biomaterials, vol. 23, no. 4, pp. 1169–1185, 2002.CrossRef
22.
go back to reference F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, “The manufacturing of hard tools from metallic powders by selective laser melting,” J. Mater. Process. Technol., vol. 111, no. 1–3, pp. 210–213, 2001.CrossRef F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, “The manufacturing of hard tools from metallic powders by selective laser melting,” J. Mater. Process. Technol., vol. 111, no. 1–3, pp. 210–213, 2001.CrossRef
23.
go back to reference B. Vandenbroucke and J. Kruth, “Selective laser melting of biocompatible metals for rapid manufacturing of medical parts,” Rapid Prototyp. J., vol. 13, no. 4, pp. 196–203, 2007.CrossRef B. Vandenbroucke and J. Kruth, “Selective laser melting of biocompatible metals for rapid manufacturing of medical parts,” Rapid Prototyp. J., vol. 13, no. 4, pp. 196–203, 2007.CrossRef
24.
go back to reference L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J. P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Mater., vol. 58, no. 9, pp. 3303–3312, 2010.CrossRef L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J. P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Mater., vol. 58, no. 9, pp. 3303–3312, 2010.CrossRef
25.
go back to reference N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf., vol. 8, pp. 12–35, 2015.CrossRef N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf., vol. 8, pp. 12–35, 2015.CrossRef
26.
go back to reference R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives,” J. Mater. Sci., vol. 39, no. 4, pp. 1195–1205, 2004.CrossRef R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives,” J. Mater. Sci., vol. 39, no. 4, pp. 1195–1205, 2004.CrossRef
27.
go back to reference J. P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing,” CIRP Ann. - Manuf. Technol., vol. 56, no. 2, pp. 730–759, 2007.CrossRef J. P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing,” CIRP Ann. - Manuf. Technol., vol. 56, no. 2, pp. 730–759, 2007.CrossRef
28.
go back to reference I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, “Particulate reinforced metal matrix composites - a review,” Journal of Materials Science, vol. 26, no. 5. pp. 1137–1156, 1991.CrossRef I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, “Particulate reinforced metal matrix composites - a review,” Journal of Materials Science, vol. 26, no. 5. pp. 1137–1156, 1991.CrossRef
29.
go back to reference A. P. Divecha, S. G. Fishman, and S. D. Karmarkar, “Silicon Carbide Reinforced Aluminum—A Formable Composite,” JOM J. Miner. Met. Mater. Soc., vol. 33, no. 9, pp. 12–17, 1981.CrossRef A. P. Divecha, S. G. Fishman, and S. D. Karmarkar, “Silicon Carbide Reinforced Aluminum—A Formable Composite,” JOM J. Miner. Met. Mater. Soc., vol. 33, no. 9, pp. 12–17, 1981.CrossRef
30.
go back to reference P. Sahoo and M. J. Koczak, “Microstructure-property relationships of in situ reacted TiC/AlCu metal matrix composites,” Mater. Sci. Eng. A, vol. 131, no. 1, pp. 69–76, 1991.CrossRef P. Sahoo and M. J. Koczak, “Microstructure-property relationships of in situ reacted TiC/AlCu metal matrix composites,” Mater. Sci. Eng. A, vol. 131, no. 1, pp. 69–76, 1991.CrossRef
31.
go back to reference S. Dadbakhsh and L. Hao, “In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe2O3 powder mixture,” Adv. Eng. Mater., vol. 14, no. 1–2, pp. 45–48, 2012.CrossRef S. Dadbakhsh and L. Hao, “In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe2O3 powder mixture,” Adv. Eng. Mater., vol. 14, no. 1–2, pp. 45–48, 2012.CrossRef
32.
go back to reference Z. Zhong and N. P. Hung, “Grinding of alumina/aluminum composites,” J. Mater. Process. Technol., vol. 123, no. 1, pp. 13–17, 2002.CrossRef Z. Zhong and N. P. Hung, “Grinding of alumina/aluminum composites,” J. Mater. Process. Technol., vol. 123, no. 1, pp. 13–17, 2002.CrossRef
33.
go back to reference S. J. Zhu and T. Iizuka, “Fabrication and mechanical behavior of Al matrix composites reinforced with porous ceramic of in situ grown whisker framework,” Mater. Sci. Eng. A, vol. 354, no. 1–2, pp. 306–314, 2003.CrossRef S. J. Zhu and T. Iizuka, “Fabrication and mechanical behavior of Al matrix composites reinforced with porous ceramic of in situ grown whisker framework,” Mater. Sci. Eng. A, vol. 354, no. 1–2, pp. 306–314, 2003.CrossRef
34.
go back to reference E. J. Lavernia, J. D. Ayers, and T. S. Srivatsan, “Rapid solidification processing with specific application to aluminium alloys,” Int. Mater. Rev., vol. 37, no. 1, pp. 1–44, 1992.CrossRef E. J. Lavernia, J. D. Ayers, and T. S. Srivatsan, “Rapid solidification processing with specific application to aluminium alloys,” Int. Mater. Rev., vol. 37, no. 1, pp. 1–44, 1992.CrossRef
35.
go back to reference E. J. Lavernia and T. S. Srivatsan, “The rapid solidification processing of materials: Science, principles, technology, advances, and applications,” Journal of Materials Science, vol. 45, no. 2. pp. 287–325, 2010.CrossRef E. J. Lavernia and T. S. Srivatsan, “The rapid solidification processing of materials: Science, principles, technology, advances, and applications,” Journal of Materials Science, vol. 45, no. 2. pp. 287–325, 2010.CrossRef
36.
go back to reference S. Dadbakhsh, L. Hao, P. G. E. Jerrard, and D. Z. Zhang, “Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe 2O 3 powder mixture,” Powder Technol., vol. 231, pp. 112–121, 2012.CrossRef S. Dadbakhsh, L. Hao, P. G. E. Jerrard, and D. Z. Zhang, “Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe 2O 3 powder mixture,” Powder Technol., vol. 231, pp. 112–121, 2012.CrossRef
37.
go back to reference R. H. Fan, H. L. Lü, K. N. Sun, W. X. Wang, and X. B. Yi, “Kinetics of thermite reaction in Al-Fe2O3 system,” Thermochim. Acta, vol. 440, no. 2, pp. 129–131, 2006.CrossRef R. H. Fan, H. L. Lü, K. N. Sun, W. X. Wang, and X. B. Yi, “Kinetics of thermite reaction in Al-Fe2O3 system,” Thermochim. Acta, vol. 440, no. 2, pp. 129–131, 2006.CrossRef
38.
go back to reference M. Das, V. K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay, “Laser processing of SiC-particle-reinforced coating on titanium,” Scr. Mater., vol. 63, no. 4, pp. 438–441, 2010.CrossRef M. Das, V. K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay, “Laser processing of SiC-particle-reinforced coating on titanium,” Scr. Mater., vol. 63, no. 4, pp. 438–441, 2010.CrossRef
39.
go back to reference R. Anandkumar, A. Almeida, and R. Vilar, “Wear behavior of Al-12Si/TiB2 coatings produced by laser cladding,” Surf. Coatings Technol., vol. 205, no. 13–14, pp. 3824–3832, 2011.CrossRef R. Anandkumar, A. Almeida, and R. Vilar, “Wear behavior of Al-12Si/TiB2 coatings produced by laser cladding,” Surf. Coatings Technol., vol. 205, no. 13–14, pp. 3824–3832, 2011.CrossRef
40.
go back to reference J. M. Torralba, C. E. Da Costa, and F. Velasco, “P/M aluminum matrix composites: An overview,” Journal of Materials Processing Technology, vol. 133, no. 1–2, pp. 203–206, 2003.CrossRef J. M. Torralba, C. E. Da Costa, and F. Velasco, “P/M aluminum matrix composites: An overview,” Journal of Materials Processing Technology, vol. 133, no. 1–2, pp. 203–206, 2003.CrossRef
41.
go back to reference D. Gu, F. Chang, and D. Dai, “Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases,” J. Manuf. Sci. Eng., vol. 137, no. 2, p. 21010, 2015.CrossRef D. Gu, F. Chang, and D. Dai, “Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases,” J. Manuf. Sci. Eng., vol. 137, no. 2, p. 21010, 2015.CrossRef
42.
go back to reference X. S. Cong, P. Shen, Y. Wang, and Q. Jiang, “Wetting of polycrystalline SiC by molten Al and Al-Si alloys,” Appl. Surf. Sci., vol. 317, pp. 140–146, 2014.CrossRef X. S. Cong, P. Shen, Y. Wang, and Q. Jiang, “Wetting of polycrystalline SiC by molten Al and Al-Si alloys,” Appl. Surf. Sci., vol. 317, pp. 140–146, 2014.CrossRef
43.
go back to reference C. Xue and J. K. Yu, “Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction,” Mater. Des., vol. 53, pp. 74–78, 2014.CrossRef C. Xue and J. K. Yu, “Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction,” Mater. Des., vol. 53, pp. 74–78, 2014.CrossRef
44.
go back to reference A. Simchi and D. Godlinski, “Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy,” Scr. Mater., vol. 59, no. 2, pp. 199–202, 2008.CrossRef A. Simchi and D. Godlinski, “Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy,” Scr. Mater., vol. 59, no. 2, pp. 199–202, 2008.CrossRef
45.
go back to reference E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components,” J. Mater. Process. Technol., vol. 211, no. 2, pp. 275–284, 2011.CrossRef E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components,” J. Mater. Process. Technol., vol. 211, no. 2, pp. 275–284, 2011.CrossRef
46.
go back to reference F. Chang, D. Gu, D. Dai, and P. Yuan, “Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size,” Surf. Coatings Technol., vol. 272, pp. 15–24, 2015.CrossRef F. Chang, D. Gu, D. Dai, and P. Yuan, “Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size,” Surf. Coatings Technol., vol. 272, pp. 15–24, 2015.CrossRef
47.
go back to reference A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, no. 10, pp. 978–982, 1939.CrossRef A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, no. 10, pp. 978–982, 1939.CrossRef
48.
go back to reference J. P. Kruth, X. Wang, T. Laoui, and L. Froyen, “Lasers and materials in selective laser sintering,” Assem. Autom., vol. 23, no. 4, pp. 357–371, 2003.CrossRef J. P. Kruth, X. Wang, T. Laoui, and L. Froyen, “Lasers and materials in selective laser sintering,” Assem. Autom., vol. 23, no. 4, pp. 357–371, 2003.CrossRef
49.
go back to reference S. Gopagoni et al., “Microstructural evolution in laser deposited nickel-titanium-carbon in situ metal matrix composites,” J. Alloys Compd., vol. 509, no. 4, pp. 1255–1260, 2011.CrossRef S. Gopagoni et al., “Microstructural evolution in laser deposited nickel-titanium-carbon in situ metal matrix composites,” J. Alloys Compd., vol. 509, no. 4, pp. 1255–1260, 2011.CrossRef
50.
go back to reference Z. de Liu, J. Tian, B. Li, and L. ping Zhao, “Microstructure and mechanical behaviors of in situ TiC particulates reinforced Ni matrix composites,” Mater. Sci. Eng. A, vol. 527, no. 16–17, pp. 3898–3903, 2010.CrossRef Z. de Liu, J. Tian, B. Li, and L. ping Zhao, “Microstructure and mechanical behaviors of in situ TiC particulates reinforced Ni matrix composites,” Mater. Sci. Eng. A, vol. 527, no. 16–17, pp. 3898–3903, 2010.CrossRef
51.
go back to reference D. Strzȩciwilk, Z. Wokulski, and P. Tkacz, “Microstructure of TiC crystals obtained from high temperature nickel solution,” J. Alloys Compd., vol. 350, no. 1–2, pp. 256–263, 2003.CrossRef D. Strzȩciwilk, Z. Wokulski, and P. Tkacz, “Microstructure of TiC crystals obtained from high temperature nickel solution,” J. Alloys Compd., vol. 350, no. 1–2, pp. 256–263, 2003.CrossRef
52.
go back to reference G. Xiao, Q. Fan, M. Gu, Z. Wang, and Z. Jin, “Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Ni cermet,” Mater. Sci. Eng. A, vol. 382, no. 1–2, pp. 132–140, 2004.CrossRef G. Xiao, Q. Fan, M. Gu, Z. Wang, and Z. Jin, “Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Ni cermet,” Mater. Sci. Eng. A, vol. 382, no. 1–2, pp. 132–140, 2004.CrossRef
53.
go back to reference Y. Li, P. Bai, Y. Wang, J. Hu, and Z. Guo, “Effect of TiC content on Ni/TiC composites by direct laser fabrication,” Mater. Des., vol. 30, no. 4, pp. 1409–1412, 2009.CrossRef Y. Li, P. Bai, Y. Wang, J. Hu, and Z. Guo, “Effect of TiC content on Ni/TiC composites by direct laser fabrication,” Mater. Des., vol. 30, no. 4, pp. 1409–1412, 2009.CrossRef
54.
go back to reference D. Strzeciwilk, P. Tkacz, and Z. Wokulski, “Transmission electron microscope studies of TiC crystals,” Cryst. Res. Technol., vol. 35, no. 11–12, pp. 1295–1303, 2000.CrossRef D. Strzeciwilk, P. Tkacz, and Z. Wokulski, “Transmission electron microscope studies of TiC crystals,” Cryst. Res. Technol., vol. 35, no. 11–12, pp. 1295–1303, 2000.CrossRef
55.
go back to reference H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, “In Situ Nitridation of Titanium Using Lens™,” Biomaterials Science: Processing, Properties and Applications V: Ceramic Transactions, Volume 254, pp. 149–159, 2015.CrossRef H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, “In Situ Nitridation of Titanium Using Lens™,” Biomaterials Science: Processing, Properties and Applications V: Ceramic Transactions, Volume 254, pp. 149–159, 2015.CrossRef
56.
go back to reference H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, “Laser processing of in situ TiN/Ti composite coating on titanium,” J. Mech. Behav. Biomed. Mater., vol. 53, pp. 239–249, 2016.CrossRef H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, “Laser processing of in situ TiN/Ti composite coating on titanium,” J. Mech. Behav. Biomed. Mater., vol. 53, pp. 239–249, 2016.CrossRef
57.
go back to reference M. Das, V. K. Balla, D. Basu, I. Manna, T. S. Sampath Kumar, and A. Bandyopadhyay, “Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings,” Scr. Mater., vol. 66, no. 8, pp. 578–581, 2012.CrossRef M. Das, V. K. Balla, D. Basu, I. Manna, T. S. Sampath Kumar, and A. Bandyopadhyay, “Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings,” Scr. Mater., vol. 66, no. 8, pp. 578–581, 2012.CrossRef
58.
go back to reference M. Das et al., “In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility,” J. Mech. Behav. Biomed. Mater., vol. 29, pp. 259–271, 2014.CrossRef M. Das et al., “In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility,” J. Mech. Behav. Biomed. Mater., vol. 29, pp. 259–271, 2014.CrossRef
59.
go back to reference H. Attar, M. Bönisch, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, “Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties,” Acta Mater., vol. 76, pp. 13–22, 2014.CrossRef H. Attar, M. Bönisch, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, “Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties,” Acta Mater., vol. 76, pp. 13–22, 2014.CrossRef
60.
go back to reference V. K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, “Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants,” Acta Biomater., vol. 5, no. 7, pp. 2800–2809, 2009.CrossRef V. K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, “Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants,” Acta Biomater., vol. 5, no. 7, pp. 2800–2809, 2009.CrossRef
61.
go back to reference R. Banerjee, P. C. Collins, and H. L. Fraser, “Laser Deposition of In Situ Ti – TiB Composites,” Adv. Eng. Mater., vol. 4, no. 11, pp. 847–851, 2002.CrossRef R. Banerjee, P. C. Collins, and H. L. Fraser, “Laser Deposition of In Situ Ti – TiB Composites,” Adv. Eng. Mater., vol. 4, no. 11, pp. 847–851, 2002.CrossRef
62.
go back to reference S. Samuel, S. Nag, T. W. Scharf, and R. Banerjee, “Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants,” Mater. Sci. Eng. C, vol. 28, no. 3, pp. 414–420, 2008.CrossRef S. Samuel, S. Nag, T. W. Scharf, and R. Banerjee, “Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants,” Mater. Sci. Eng. C, vol. 28, no. 3, pp. 414–420, 2008.CrossRef
63.
go back to reference S. Nag, S. Samuel, A. Puthucode, and R. Banerjee, “Characterization of novel borides in Ti-Nb-Zr-Ta + 2B metal-matrix composites,” Mater. Charact., vol. 60, no. 2, pp. 106–113, 2009.CrossRef S. Nag, S. Samuel, A. Puthucode, and R. Banerjee, “Characterization of novel borides in Ti-Nb-Zr-Ta + 2B metal-matrix composites,” Mater. Charact., vol. 60, no. 2, pp. 106–113, 2009.CrossRef
64.
go back to reference A. Genç, R. Banerjee, D. Hill, and H. L. Fraser, “Structure of TiB precipitates in laser deposited in situ, Ti-6Al-4V-TiB composites,” Mater. Lett., vol. 60, no. 7, pp. 859–863, 2006.CrossRef A. Genç, R. Banerjee, D. Hill, and H. L. Fraser, “Structure of TiB precipitates in laser deposited in situ, Ti-6Al-4V-TiB composites,” Mater. Lett., vol. 60, no. 7, pp. 859–863, 2006.CrossRef
65.
go back to reference D. G. Bansal, O. L. Eryilmaz, and P. J. Blau, “Surface engineering to improve the durability and lubricity of Ti-6Al-4V alloy,” Wear, vol. 271, no. 9–10, pp. 2006–2015, 2011.CrossRef D. G. Bansal, O. L. Eryilmaz, and P. J. Blau, “Surface engineering to improve the durability and lubricity of Ti-6Al-4V alloy,” Wear, vol. 271, no. 9–10, pp. 2006–2015, 2011.CrossRef
66.
go back to reference M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review,” Progress in Materials Science, vol. 54, no. 3. pp. 397–425, 2009.CrossRef M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review,” Progress in Materials Science, vol. 54, no. 3. pp. 397–425, 2009.CrossRef
67.
go back to reference A. Liu, “Transcendental Data: Toward a Cultural History and Aesthetics of the New Encoded Discourse,” Crit. Inq., vol. 31, no. Autumn, pp. 49–84, 2004.CrossRef A. Liu, “Transcendental Data: Toward a Cultural History and Aesthetics of the New Encoded Discourse,” Crit. Inq., vol. 31, no. Autumn, pp. 49–84, 2004.CrossRef
68.
go back to reference R. A. Buchanan, E. D. Rigney, and J. M. Williams, “Ion implantation of surgical Ti???6Al???4V for improved resistance to wear???accelerated corrosion,” J. Biomed. Mater. Res., vol. 21, no. 3, pp. 355–366, 1987.CrossRef R. A. Buchanan, E. D. Rigney, and J. M. Williams, “Ion implantation of surgical Ti???6Al???4V for improved resistance to wear???accelerated corrosion,” J. Biomed. Mater. Res., vol. 21, no. 3, pp. 355–366, 1987.CrossRef
69.
go back to reference C. B. Johansson, J. Lausmaa, T. Röstlund, and P. Thomsen, “Commercially pure titanium and Ti6AI4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone,” J. Mater. Sci. Mater. Med., vol. 4, no. 2, pp. 132–141, 1993.CrossRef C. B. Johansson, J. Lausmaa, T. Röstlund, and P. Thomsen, “Commercially pure titanium and Ti6AI4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone,” J. Mater. Sci. Mater. Med., vol. 4, no. 2, pp. 132–141, 1993.CrossRef
70.
go back to reference C. Hu, H. Xin, L. M. Watson, and T. N. Baker, “Analysis of the phases developed by laser nitriding Ti-6Al-4V alloys,” Acta Mater., vol. 45, no. 10, pp. 4311–4322, 1997.CrossRef C. Hu, H. Xin, L. M. Watson, and T. N. Baker, “Analysis of the phases developed by laser nitriding Ti-6Al-4V alloys,” Acta Mater., vol. 45, no. 10, pp. 4311–4322, 1997.CrossRef
71.
go back to reference A. Czyrska-Filemonowicz et al., “Transmission electron microscopy and atomic force microscopy characterisation of titanium-base alloys nitrided under glow discharge,” Acta Mater., vol. 53, no. 16, pp. 4367–4377, 2005.CrossRef A. Czyrska-Filemonowicz et al., “Transmission electron microscopy and atomic force microscopy characterisation of titanium-base alloys nitrided under glow discharge,” Acta Mater., vol. 53, no. 16, pp. 4367–4377, 2005.CrossRef
72.
go back to reference A. Zhecheva, W. Sha, S. Malinov, and A. Long, “Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods,” Surface and Coatings Technology, vol. 200, no. 7. pp. 2192–2207, 2005.CrossRef A. Zhecheva, W. Sha, S. Malinov, and A. Long, “Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods,” Surface and Coatings Technology, vol. 200, no. 7. pp. 2192–2207, 2005.CrossRef
73.
go back to reference M. Nakai et al., “Surface hardening of biomedical Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI by gas nitriding,” Mater. Sci. Eng. A, vol. 486, no. 1–2, pp. 193–201, 2008.CrossRef M. Nakai et al., “Surface hardening of biomedical Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI by gas nitriding,” Mater. Sci. Eng. A, vol. 486, no. 1–2, pp. 193–201, 2008.CrossRef
74.
go back to reference H. Mohseni, P. Nandwana, A. Tsoi, R. Banerjee, and T. W. Scharf, “In situ nitrided titanium alloys: Microstructural evolution during solidification and wear,” Acta Mater., vol. 83, pp. 61–74, 2015.CrossRef H. Mohseni, P. Nandwana, A. Tsoi, R. Banerjee, and T. W. Scharf, “In situ nitrided titanium alloys: Microstructural evolution during solidification and wear,” Acta Mater., vol. 83, pp. 61–74, 2015.CrossRef
75.
go back to reference R. Banerjee, P. C. Collins, A. Genç, and H. L. Fraser, “Direct laser deposition of in situ Ti-6Al-4V-TiB composites,” Mater. Sci. Eng. A, vol. 358, no. 1–2, pp. 343–349, 2003.CrossRef R. Banerjee, P. C. Collins, A. Genç, and H. L. Fraser, “Direct laser deposition of in situ Ti-6Al-4V-TiB composites,” Mater. Sci. Eng. A, vol. 358, no. 1–2, pp. 343–349, 2003.CrossRef
Metadata
Title
Additive Manufacturing of In Situ Metal Matrix Composites
Authors
Taban Larimian
Tushar Borkar
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91713-9_1