Skip to main content
Top

2021 | OriginalPaper | Chapter

4. Addressing Shuttle Phenomena: Anchored Redox Mediator for Sustainable Redox Mediation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although the use of RMs is considered an effective approach to reduce the large overpotential in lithium–oxygen batteries, the mobility of RMs triggering the detrimental shuttle effect hinders the sufficient enhancement of the cyclability. In this part, the research to address shuttle effect by anchoring the RMs in polymer form and simultaneously maintaining charge-carrying property will be introduced. Exploting PTMA (2,2,6,6–tetramethyl–1–piperidinyloxy–4–yl methacrylate) as a model polymer system, it is observed that PTMA has the capability to function as a stationary RM, while preserving the redox activity. Due to the prevention of shuttle effect, the consumption of oxidized RMs or lithium anode degradation was significantly suppressed, and at the same time, the efficiency of Li2O2 decomposition by RMs remains remarkably stable, resulting in the remarkable improvement of lithium–oxygen cell performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19CrossRef
2.
go back to reference Lim H-D, Lee B, Bae Y, Park H, Ko Y, Kim H et al (2017) Reaction chemistry in rechargeable Li–O2 batteries. Chem Soc Rev 46(10):2873–2888CrossRef Lim H-D, Lee B, Bae Y, Park H, Ko Y, Kim H et al (2017) Reaction chemistry in rechargeable Li–O2 batteries. Chem Soc Rev 46(10):2873–2888CrossRef
3.
go back to reference Ko Y, Park H, Kim B, Kim JS, Kang K (2019) Redox mediators: a solution for advanced lithium–oxygen batteries. Trends Chem 1(3):349–360CrossRef Ko Y, Park H, Kim B, Kim JS, Kang K (2019) Redox mediators: a solution for advanced lithium–oxygen batteries. Trends Chem 1(3):349–360CrossRef
4.
go back to reference Woo H, Kang J, Kim J, Kim C, Nam S, Park B (2016) Development of carbon-based cathodes for Li-air batteries: present and future. Electron Mater Lett 12(5):551–567CrossRef Woo H, Kang J, Kim J, Kim C, Nam S, Park B (2016) Development of carbon-based cathodes for Li-air batteries: present and future. Electron Mater Lett 12(5):551–567CrossRef
5.
go back to reference Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium—air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium—air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef
6.
go back to reference Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R et al (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRef Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R et al (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRef
7.
go back to reference Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum—gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium—air batteries. J Am Chem Soc 132(35):12170–12171CrossRef Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum—gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium—air batteries. J Am Chem Soc 132(35):12170–12171CrossRef
8.
go back to reference Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051CrossRef Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051CrossRef
9.
go back to reference Ma S, Wu Y, Wang J, Zhang Y, Zhang Y, Yan X et al (2015) Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett 15(12):8084–8090CrossRef Ma S, Wu Y, Wang J, Zhang Y, Zhang Y, Yan X et al (2015) Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett 15(12):8084–8090CrossRef
10.
go back to reference Lim H-D, Song H, Gwon H, Park K-Y, Kim J, Bae Y et al (2013) A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries. Energy Environ Sci 6(12):3570–3575CrossRef Lim H-D, Song H, Gwon H, Park K-Y, Kim J, Bae Y et al (2013) A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries. Energy Environ Sci 6(12):3570–3575CrossRef
11.
go back to reference Débart A, Paterson AJ, Bao J, Bruce PG (2008) α‐MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 47(24):4521–4524CrossRef Débart A, Paterson AJ, Bao J, Bruce PG (2008) α‐MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 47(24):4521–4524CrossRef
12.
go back to reference Lee YJ, Kim DH, Kang T-G, Ko Y, Kang K, Lee YJ (2017) Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem Mater 29(24):10542–10550CrossRef Lee YJ, Kim DH, Kang T-G, Ko Y, Kang K, Lee YJ (2017) Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem Mater 29(24):10542–10550CrossRef
13.
go back to reference McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041CrossRef McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041CrossRef
14.
go back to reference Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489CrossRef Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489CrossRef
15.
go back to reference Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H et al (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066CrossRef Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H et al (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066CrossRef
16.
go back to reference Ko Y, Park H, Kim B, Kim JS, Kang K (2019) Redox mediators: a solution for advanced lithium-oxygen batteries. Trends Chem 1:349–360CrossRef Ko Y, Park H, Kim B, Kim JS, Kang K (2019) Redox mediators: a solution for advanced lithium-oxygen batteries. Trends Chem 1:349–360CrossRef
17.
go back to reference Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064CrossRef Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064CrossRef
18.
go back to reference Ko Y, Park H, Kim J, Lim HD, Lee B, Kwon G et al (2019) Biological redox mediation in electron transport chain of bacteria for oxygen reduction reaction catalysts in lithium-oxygen batteries. Adv Funct Mater 29(5):1805623CrossRef Ko Y, Park H, Kim J, Lim HD, Lee B, Kwon G et al (2019) Biological redox mediation in electron transport chain of bacteria for oxygen reduction reaction catalysts in lithium-oxygen batteries. Adv Funct Mater 29(5):1805623CrossRef
19.
go back to reference Lim H-D, Lee B, Bae Y, Park H, Ko Y, Kim H et al (2017) Reaction chemistry in rechargeable Li–O2 batteries. Chem Soc Rev 46(10):2873–2888 Lim H-D, Lee B, Bae Y, Park H, Ko Y, Kim H et al (2017) Reaction chemistry in rechargeable Li–O2 batteries. Chem Soc Rev 46(10):2873–2888
20.
go back to reference Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY et al (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed 53(15):3926–3931CrossRef Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY et al (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed 53(15):3926–3931CrossRef
21.
go back to reference Kwak W-J, Hirshberg D, Sharon D, Afri M, Frimer AA, Jung H-G et al (2016) Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ Sci 9(7):2334–2345CrossRef Kwak W-J, Hirshberg D, Sharon D, Afri M, Frimer AA, Jung H-G et al (2016) Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ Sci 9(7):2334–2345CrossRef
22.
go back to reference Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G (2017) Modified tetrathiafulvalene as an organic conductor for improving performances of Li–O2 batteries. Angew Chem Int Ed 56(29):8505–8509CrossRef Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G (2017) Modified tetrathiafulvalene as an organic conductor for improving performances of Li–O2 batteries. Angew Chem Int Ed 56(29):8505–8509CrossRef
23.
go back to reference Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823CrossRef Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823CrossRef
24.
go back to reference Lee DJ, Lee H, Kim Y-J, Park J-K, Kim H-T (2015) Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv Mater 28(5):857–863CrossRef Lee DJ, Lee H, Kim Y-J, Park J-K, Kim H-T (2015) Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv Mater 28(5):857–863CrossRef
25.
go back to reference Bergner BJ, Busche MR, Pinedo R, Berkes BB, Schröder D, Janek J (2016) How to improve capacity and cycling stability for next generation Li–O2 batteries: approach with a solid electrolyte and elevated redox mediator concentrations. ACS Appl Mater Interfaces 8(12):7756–7765CrossRef Bergner BJ, Busche MR, Pinedo R, Berkes BB, Schröder D, Janek J (2016) How to improve capacity and cycling stability for next generation Li–O2 batteries: approach with a solid electrolyte and elevated redox mediator concentrations. ACS Appl Mater Interfaces 8(12):7756–7765CrossRef
26.
go back to reference Qiao Y, He Y, Wu S, Jiang K, Li X, Guo S et al (2018) MOF-based separator in an Li–O2 battery: an effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett 3(2):463–468CrossRef Qiao Y, He Y, Wu S, Jiang K, Li X, Guo S et al (2018) MOF-based separator in an Li–O2 battery: an effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett 3(2):463–468CrossRef
27.
go back to reference Gao X, Chen Y, Johnson LR, Jovanov ZP, Bruce PG (2017) A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat Energy 2(9):17118CrossRef Gao X, Chen Y, Johnson LR, Jovanov ZP, Bruce PG (2017) A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat Energy 2(9):17118CrossRef
28.
go back to reference Kentaro N, Kenichi O, Hiroyuki N (2011) Organic radical battery approaching practical use. Chem Lett 40(3):222–227CrossRef Kentaro N, Kenichi O, Hiroyuki N (2011) Organic radical battery approaching practical use. Chem Lett 40(3):222–227CrossRef
29.
go back to reference Wang S, Li F, Easley AD, Lutkenhaus JL (2019) Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat Mater 18(1):69CrossRef Wang S, Li F, Easley AD, Lutkenhaus JL (2019) Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat Mater 18(1):69CrossRef
30.
go back to reference Bugnon L, Morton CJ, Novak P, Vetter J, Nesvadba P (2007) Synthesis of poly (4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19(11):2910–2914CrossRef Bugnon L, Morton CJ, Novak P, Vetter J, Nesvadba P (2007) Synthesis of poly (4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19(11):2910–2914CrossRef
31.
go back to reference Kurosaki T, Lee KW, Okawara M (1972) Polymers having stable radicals. I. Synthesis of nitroxyl polymers from 4‐methacryloyl derivatives of 2, 2, 6, 6‐tetramethylpiperidine. J Polym Sci Part A: Polym Chem 10(11):3295–3310CrossRef Kurosaki T, Lee KW, Okawara M (1972) Polymers having stable radicals. I. Synthesis of nitroxyl polymers from 4‐methacryloyl derivatives of 2, 2, 6, 6‐tetramethylpiperidine. J Polym Sci Part A: Polym Chem 10(11):3295–3310CrossRef
32.
go back to reference Guo W, Yin Y-X, Xin S, Guo Y-G, Wan L-J (2012) Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ Sci 5(1):5221–5225CrossRef Guo W, Yin Y-X, Xin S, Guo Y-G, Wan L-J (2012) Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ Sci 5(1):5221–5225CrossRef
33.
go back to reference Zhang J, Sun B, Xie X, Zhao Y, Wang G (2016) A bifunctional organic redox catalyst for rechargeable lithium-oxygen batteries with enhanced performances. Adv Sci 3(4):1500285CrossRef Zhang J, Sun B, Xie X, Zhao Y, Wang G (2016) A bifunctional organic redox catalyst for rechargeable lithium-oxygen batteries with enhanced performances. Adv Sci 3(4):1500285CrossRef
34.
go back to reference McCloskey BD, Valery A, Luntz AC, Gowda SR, Wallraff GM, Garcia JM et al (2013) Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J Phys Chem Lett 4(17):2989–2993CrossRef McCloskey BD, Valery A, Luntz AC, Gowda SR, Wallraff GM, Garcia JM et al (2013) Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J Phys Chem Lett 4(17):2989–2993CrossRef
35.
go back to reference Yin W, Grimaud A, Azcarate I, Yang C, Tarascon J-M (2018) Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li–CO2 battery. J Phys Chem C 122(12):6546–6554CrossRef Yin W, Grimaud A, Azcarate I, Yang C, Tarascon J-M (2018) Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li–CO2 battery. J Phys Chem C 122(12):6546–6554CrossRef
36.
go back to reference Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M et al (2002) Rechargeable batteries with organic radical cathodes. Chem Phys Lett 359(5):351–354CrossRef Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M et al (2002) Rechargeable batteries with organic radical cathodes. Chem Phys Lett 359(5):351–354CrossRef
37.
go back to reference Wong RA, Yang C, Dutta A, Minho O, Hong M, Thomas ML et al (2018) Critically examining the role of nanocatalysts in Li–O2 batteries: viability toward suppression of recharge overpotential, rechargeability, and cyclability. ACS Energy Lett 3(3):592–597CrossRef Wong RA, Yang C, Dutta A, Minho O, Hong M, Thomas ML et al (2018) Critically examining the role of nanocatalysts in Li–O2 batteries: viability toward suppression of recharge overpotential, rechargeability, and cyclability. ACS Energy Lett 3(3):592–597CrossRef
38.
go back to reference Bae Y, Ko DH, Lee S, Lim HD, Kim YJ, Shim HS et al (2018) Enhanced stability of coated carbon electrode for Li-O2 batteries and its limitations. Adv Energy Mater 8(16):1702661CrossRef Bae Y, Ko DH, Lee S, Lim HD, Kim YJ, Shim HS et al (2018) Enhanced stability of coated carbon electrode for Li-O2 batteries and its limitations. Adv Energy Mater 8(16):1702661CrossRef
39.
go back to reference Bae Y, Yun YS, Lim H-D, Lee H, Kim Y-J, Kim J et al (2016) Tuning the carbon crystallinity for highly stable Li–O2 batteries. Chem Mater 28(22):8160–8169CrossRef Bae Y, Yun YS, Lim H-D, Lee H, Kim Y-J, Kim J et al (2016) Tuning the carbon crystallinity for highly stable Li–O2 batteries. Chem Mater 28(22):8160–8169CrossRef
40.
go back to reference Kahn O (1993) Molecular magnetism, vol 393. VCH Publishers, USA Kahn O (1993) Molecular magnetism, vol 393. VCH Publishers, USA
41.
go back to reference Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50(2–3):827–831CrossRef Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50(2–3):827–831CrossRef
42.
go back to reference Oyaizu K, Nishide H (2009) Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv Mater 21(22):2339–2344CrossRef Oyaizu K, Nishide H (2009) Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv Mater 21(22):2339–2344CrossRef
43.
go back to reference Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K (2007) Cationic polymerization of poly (vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol Rapid Commun 28(18–19):1929–1933CrossRef Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K (2007) Cationic polymerization of poly (vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol Rapid Commun 28(18–19):1929–1933CrossRef
Metadata
Title
Addressing Shuttle Phenomena: Anchored Redox Mediator for Sustainable Redox Mediation
Author
Youngmin Ko
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2532-9_4