Skip to main content
Top
Published in: Calcolo 3/2023

01-09-2023

ADI Finite Element Galerkin Methods for Two-dimensional Tempered Fractional Integro-differential Equations

Authors: Wenlin Qiu, Graeme Fairweather, Xuehua Yang, Haixiang Zhang

Published in: Calcolo | Issue 3/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three alternating direction implicit (ADI) finite element Galerkin methods for solving two-dimensional tempered fractional integro-differential equations are formulated and analyzed. For the time discretization, these methods are based on the backward Euler scheme, the Crank–Nicolson scheme and the second-order backward differentiation formula, respectively, each combined with an appropriate convolution quadrature rule. For each technique, optimal error estimates are derived and validated by numerical experiments.
Literature
1.
go back to reference Bateman, H.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953) Bateman, H.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)
2.
go back to reference Chan, R.H.F., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)CrossRefMATH Chan, R.H.F., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)CrossRefMATH
3.
go back to reference Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM: Math. Mod. Numer. Anal. 49, 373–394 (2015)MathSciNetMATH Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM: Math. Mod. Numer. Anal. 49, 373–394 (2015)MathSciNetMATH
4.
go back to reference Chen, M., Deng, W.: A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68, 87–93 (2017)MathSciNetCrossRefMATH Chen, M., Deng, W.: A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68, 87–93 (2017)MathSciNetCrossRefMATH
5.
go back to reference Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)MathSciNetCrossRefMATH Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)MathSciNetCrossRefMATH
6.
go back to reference Dendy, J.E.: An analysis of some Galerkin schemes for the solution of nonlinear time dependent problems. SIAM J. Numer. Anal. 12, 541–565 (1975)MathSciNetCrossRefMATH Dendy, J.E.: An analysis of some Galerkin schemes for the solution of nonlinear time dependent problems. SIAM J. Numer. Anal. 12, 541–565 (1975)MathSciNetCrossRefMATH
7.
go back to reference Deng, W., Li, B., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman-Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)MathSciNetCrossRefMATH Deng, W., Li, B., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman-Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)MathSciNetCrossRefMATH
8.
go back to reference Fernandes, R.I., Bialecki, B., Fairweather, G.: Alternating direction implicit orthogonal spline collocation methods for evolution equations. In: Mathematical modelling and applications to industrial problems (MMIP-2011), Jacob, M.J., Panda, S. editors, Macmillan Publishers India Limited, pp. 3–11 (2012) Fernandes, R.I., Bialecki, B., Fairweather, G.: Alternating direction implicit orthogonal spline collocation methods for evolution equations. In: Mathematical modelling and applications to industrial problems (MMIP-2011), Jacob, M.J., Panda, S. editors, Macmillan Publishers India Limited, pp. 3–11 (2012)
9.
go back to reference Fernandes, R.I., Fairweather, G.: An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables. SIAM J. Numer. Anal. 28, 1265–1281 (1991)MathSciNetCrossRefMATH Fernandes, R.I., Fairweather, G.: An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables. SIAM J. Numer. Anal. 28, 1265–1281 (1991)MathSciNetCrossRefMATH
10.
go back to reference Fernandez, A., Ustaoğlu, C.: On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 366, 112400 (2020)MathSciNetCrossRefMATH Fernandez, A., Ustaoğlu, C.: On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 366, 112400 (2020)MathSciNetCrossRefMATH
11.
go back to reference Guo, L., Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: Efficient multistep methods for tempered fractional calculus: Algorithms and simulations. SIAM J. Sci. Comput. 41, A2510–A2535 (2019)MathSciNetCrossRefMATH Guo, L., Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: Efficient multistep methods for tempered fractional calculus: Algorithms and simulations. SIAM J. Sci. Comput. 41, A2510–A2535 (2019)MathSciNetCrossRefMATH
12.
go back to reference Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications, 2nd edn. AMS Chelsea, Providence, RI (2001)MATH Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications, 2nd edn. AMS Chelsea, Providence, RI (2001)MATH
13.
go back to reference Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Disc. Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019)MATH Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Disc. Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019)MATH
16.
go back to reference McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH
17.
go back to reference Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH
18.
go back to reference Qiao, L., Xu, D., Qiu, W.: The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. Appl. Numer. Math. 172, 359–381 (2022)MathSciNetCrossRefMATH Qiao, L., Xu, D., Qiu, W.: The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. Appl. Numer. Math. 172, 359–381 (2022)MathSciNetCrossRefMATH
19.
go back to reference Qiu, W., Xu, D., Guo, J., Zhou, J.: A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algorithms 85, 39–58 (2020)MathSciNetCrossRefMATH Qiu, W., Xu, D., Guo, J., Zhou, J.: A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algorithms 85, 39–58 (2020)MathSciNetCrossRefMATH
20.
go back to reference Qiu, W.: Optimal error estimate of accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels. Adv. Comput. Math. 49, 43 (2023) Qiu, W.: Optimal error estimate of accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels. Adv. Comput. Math. 49, 43 (2023)
21.
go back to reference Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. New York (1987) Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. New York (1987)
23.
go back to reference Sultana, F., Singh, D., Pandey, R.K., Zeidan, D.: Numerical schemes for a class of tempered fractional integro-differential equations. Appl. Numer. Math. 157, 110–134 (2020)MathSciNetCrossRefMATH Sultana, F., Singh, D., Pandey, R.K., Zeidan, D.: Numerical schemes for a class of tempered fractional integro-differential equations. Appl. Numer. Math. 157, 110–134 (2020)MathSciNetCrossRefMATH
24.
25.
go back to reference Zaky, M.A.: Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl. Numer. Math. 145, 429–457 (2019)MathSciNetCrossRefMATH Zaky, M.A.: Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl. Numer. Math. 145, 429–457 (2019)MathSciNetCrossRefMATH
Metadata
Title
ADI Finite Element Galerkin Methods for Two-dimensional Tempered Fractional Integro-differential Equations
Authors
Wenlin Qiu
Graeme Fairweather
Xuehua Yang
Haixiang Zhang
Publication date
01-09-2023
Publisher
Springer International Publishing
Published in
Calcolo / Issue 3/2023
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-023-00533-5

Other articles of this Issue 3/2023

Calcolo 3/2023 Go to the issue

Premium Partner