Skip to main content
Top

2024 | OriginalPaper | Chapter

Advances in Machine-Learning Based Disaggregation of Building Heating Loads: A Review

Authors : Synne Krekling Lien, Behzad Najafi, Jayaprakash Rajasekharan

Published in: Energy Informatics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review article investigates the methods proposed for disaggregating the space heating units’ load from the aggregate electricity load of commercial and residential buildings. It explores conventional approaches together with those that employ traditional machine learning, deep supervised learning and reinforcement learning. The review also outlines corresponding data requirements and examines the suitability of a commonly utilised toolkit for disaggregating heating loads from low-frequency aggregate power measurements. It is shown that most of the proposed approaches have been applied to high-resolution measurements and that few studies have been dedicated to low-resolution aggregate loads (e.g. provided by smart meters). Furthermore, only a few methods have taken account of special considerations for heating technologies, given the corresponding governing physical phenomena. Accordingly, the recommendations for future works include adding a rigorous pre-processing step, in which features inspired by the building physics (e.g. lagged values for the ambient conditions and values that represent the correlation between heating consumption and outdoor temperature) are added to the available input feature pool. Such a pipeline may benefit from deep supervised learning or reinforcement learning methods, as these methods are shown to offer higher performance compared to traditional machine learning algorithms for load disaggregation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Energy Transitions Commission, ‘Making Mission Possible’, Health Prog. 76(6), 45–7, 60 (2020) Energy Transitions Commission, ‘Making Mission Possible’, Health Prog. 76(6), 45–7, 60 (2020)
6.
go back to reference Lindberg, K.B.: Doctoral thesis Impact of Zero Energy Buildings on the Power System A study of load profiles, flexibility and Impact of Zero Energy Buildings on the Power System A study of load profiles , flexibility and system, vol. 6 (2017) Lindberg, K.B.: Doctoral thesis Impact of Zero Energy Buildings on the Power System A study of load profiles, flexibility and Impact of Zero Energy Buildings on the Power System A study of load profiles , flexibility and system, vol. 6 (2017)
11.
go back to reference Makonin, S.: Approaches to Non-Intrusive Load Monitoring (NILM) in the Home APPROACHES TO NON-INTRUSIVE LOAD MONITORING (NILM) by Doctor of Philosophy School of Computing Science, no. October 2012, 2014 Makonin, S.: Approaches to Non-Intrusive Load Monitoring (NILM) in the Home APPROACHES TO NON-INTRUSIVE LOAD MONITORING (NILM) by Doctor of Philosophy School of Computing Science, no. October 2012, 2014
14.
go back to reference Figueiredo, M.B., De Almeida, A., Ribeiro, B.: An experimental study on electrical signature identification of non-intrusive load monitoring (NILM) systems. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 6594 LNCS, no. PART 2, pp. 31–40 (2011). https://doi.org/10.1007/978-3-642-20267-4_4 Figueiredo, M.B., De Almeida, A., Ribeiro, B.: An experimental study on electrical signature identification of non-intrusive load monitoring (NILM) systems. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 6594 LNCS, no. PART 2, pp. 31–40 (2011). https://​doi.​org/​10.​1007/​978-3-642-20267-4_​4
15.
go back to reference Nguyen, K.T., et al.: Event detection and disaggregation algorithms for NIALM system. In: NILM Workshop, June 2014, pp. 2–5 (2014) Nguyen, K.T., et al.: Event detection and disaggregation algorithms for NIALM system. In: NILM Workshop, June 2014, pp. 2–5 (2014)
16.
go back to reference Gonçalves, H., Ocneanu, A., Bergés, M.: Unsupervised disaggregation of appliances using aggregated consumption data. Environ (2011) Gonçalves, H., Ocneanu, A., Bergés, M.: Unsupervised disaggregation of appliances using aggregated consumption data. Environ (2011)
17.
go back to reference Wang, L., Luo, X., Zhang, W.: Unsupervised energy disaggregation with factorial hidden Markov models based on generalized backfitting algorithm. In: EEE International Conference of IEEE Region 10 (TENCON 2013) (2013) Wang, L., Luo, X., Zhang, W.: Unsupervised energy disaggregation with factorial hidden Markov models based on generalized backfitting algorithm. In: EEE International Conference of IEEE Region 10 (TENCON 2013) (2013)
20.
go back to reference Kelly, J., et al.: NILMTK v0.2: a non-intrusive load monitoring toolkit for large scale datasets: demo abstract. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, in BuildSys ’14. Nov. 2014, pp. 182–183, Association for Computing Machinery, New York. https://doi.org/10.1145/2674061.2675024 Kelly, J., et al.: NILMTK v0.2: a non-intrusive load monitoring toolkit for large scale datasets: demo abstract. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, in BuildSys ’14. Nov. 2014, pp. 182–183, Association for Computing Machinery, New York. https://​doi.​org/​10.​1145/​2674061.​2675024
21.
go back to reference Batra, N., et al. Towards reproducible state-of-the-art energy disaggregation. In: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Nov. 2019, pp. 193–202. ACM, New York. https://doi.org/10.1145/3360322.3360844 Batra, N., et al. Towards reproducible state-of-the-art energy disaggregation. In: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Nov. 2019, pp. 193–202. ACM, New York. https://​doi.​org/​10.​1145/​3360322.​3360844
23.
go back to reference Lindberg, K.B.: Impact of zero energy buildings on the power system, p. 192 Lindberg, K.B.: Impact of zero energy buildings on the power system, p. 192
27.
go back to reference Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A., Al-Kababji, A.: Recent trends of smart nonintrusive load monitoring in buildings: a review, open challenges, and future directions. Int. J. Intell. Syst.Intell. Syst. 37(10), 7124–7179 (2022). https://doi.org/10.1002/int.22876CrossRef Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A., Al-Kababji, A.: Recent trends of smart nonintrusive load monitoring in buildings: a review, open challenges, and future directions. Int. J. Intell. Syst.Intell. Syst. 37(10), 7124–7179 (2022). https://​doi.​org/​10.​1002/​int.​22876CrossRef
29.
30.
go back to reference Batra, N., Gulati, M., Singh, A., Srivastava, M.B.: It’s Different: insights into home energy consumption in India. In: Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings, in BuildSys’13. November 2013, pp. 1–8. Association for Computing Machinery, New York, November 2013. https://doi.org/10.1145/2528282.2528293 Batra, N., Gulati, M., Singh, A., Srivastava, M.B.: It’s Different: insights into home energy consumption in India. In: Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings, in BuildSys’13. November 2013, pp. 1–8. Association for Computing Machinery, New York, November 2013. https://​doi.​org/​10.​1145/​2528282.​2528293
34.
go back to reference Kolter, J.Z., Johnson, M.J.: REDD: A Public Dataset for Energy Disaggregation Research’ Kolter, J.Z., Johnson, M.J.: REDD: A Public Dataset for Energy Disaggregation Research’
35.
go back to reference Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO dataset and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis Tennessee: ACM, pp. 80–89, November 2014. https://doi.org/10.1145/2674061.2674064 Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO dataset and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis Tennessee: ACM, pp. 80–89, November 2014. https://​doi.​org/​10.​1145/​2674061.​2674064
38.
go back to reference Household Electricity Survey - Data Briefing Household Electricity Survey - Data Briefing
40.
go back to reference Anderson, K.D., Ocneanu, A.F., Benitez, D., Carlson, D., Rowe, A., Berges, M.: BLUED: a fully labeled public dataset for event-based non-intrusive load monitoring research, August 2023 Anderson, K.D., Ocneanu, A.F., Benitez, D., Carlson, D., Rowe, A., Berges, M.: BLUED: a fully labeled public dataset for event-based non-intrusive load monitoring research, August 2023
41.
go back to reference Reinhardt, A., et al.: On the accuracy of appliance identification based on distributed load metering data, p. 9 (2012) Reinhardt, A., et al.: On the accuracy of appliance identification based on distributed load metering data, p. 9 (2012)
44.
go back to reference Uttama Nambi, A.S.N., Reyes Lua, A., Prasad, V.R.: LocED: location-aware energy disaggregation framework. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul South Korea: ACM, pp. 45–54, November 2015. https://doi.org/10.1145/2821650.2821659 Uttama Nambi, A.S.N., Reyes Lua, A., Prasad, V.R.: LocED: location-aware energy disaggregation framework. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul South Korea: ACM, pp. 45–54, November 2015. https://​doi.​org/​10.​1145/​2821650.​2821659
49.
go back to reference Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht, J.: Smart*: an open dataset and tools for enabling research in sustainable homes. In: Proceedings of SustKDD, January 2012 Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht, J.: Smart*: an open dataset and tools for enabling research in sustainable homes. In: Proceedings of SustKDD, January 2012
50.
go back to reference Batra, N., Parson, O., Berges, M., Singh, A., Rogers, A.: A comparison of non-intrusive load monitoring methods for commercial and residential buildings (2014) Batra, N., Parson, O., Berges, M., Singh, A., Rogers, A.: A comparison of non-intrusive load monitoring methods for commercial and residential buildings (2014)
52.
58.
go back to reference Zaeri, N., Gunay, H.B., Ashouri, A.: Unsupervised energy disaggregation using time series decomposition for commercial buildings. In: Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Boston Massachusetts: ACM, pp. 373–377, November 2022. https://doi.org/10.1145/3563357.3566155 Zaeri, N., Gunay, H.B., Ashouri, A.: Unsupervised energy disaggregation using time series decomposition for commercial buildings. In: Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Boston Massachusetts: ACM, pp. 373–377, November 2022. https://​doi.​org/​10.​1145/​3563357.​3566155
59.
go back to reference Amayri, M., Silva, C.S., Pombeiro, H., Ploix, S.: Flexibility characterization of residential electricity consumption: A machine learning approach. Sustain. Energy Grids Netw. 32, 100801 (2022)CrossRef Amayri, M., Silva, C.S., Pombeiro, H., Ploix, S.: Flexibility characterization of residential electricity consumption: A machine learning approach. Sustain. Energy Grids Netw. 32, 100801 (2022)CrossRef
62.
go back to reference Kaselimi, M., Doulamis, N., Doulamis, A., Voulodimos, A., Protopapadakis, E.: Bayesian-optimized bidirectional LSTM regression model for non-intrusive load monitoring. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE, pp. 2747–2751, May 2019. https://doi.org/10.1109/ICASSP.2019.8683110 Kaselimi, M., Doulamis, N., Doulamis, A., Voulodimos, A., Protopapadakis, E.: Bayesian-optimized bidirectional LSTM regression model for non-intrusive load monitoring. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE, pp. 2747–2751, May 2019. https://​doi.​org/​10.​1109/​ICASSP.​2019.​8683110
65.
go back to reference Davies, P., Dennis, J., Hansom, J., Martin, W., Stankevicius, A., Ward, L.: Deep neural networks for appliance transient classification. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 8320–8324. doi: https://doi.org/10.1109/ICASSP.2019.8682658 Davies, P., Dennis, J., Hansom, J., Martin, W., Stankevicius, A., Ward, L.: Deep neural networks for appliance transient classification. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 8320–8324. doi: https://​doi.​org/​10.​1109/​ICASSP.​2019.​8682658
67.
go back to reference Wang, T.S., Ji, T.Y., Li, M.S.: A new approach for supervised power disaggregation by using a denoising autoencoder and recurrent LSTM network. In: 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France: IEEE, pp. 507–512, August 2019. https://doi.org/10.1109/DEMPED.2019.8864870 Wang, T.S., Ji, T.Y., Li, M.S.: A new approach for supervised power disaggregation by using a denoising autoencoder and recurrent LSTM network. In: 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France: IEEE, pp. 507–512, August 2019. https://​doi.​org/​10.​1109/​DEMPED.​2019.​8864870
68.
go back to reference Harell, A., Makonin, S., Bajic, I.V.: Wavenilm: a causal neural network for power disaggregation from the complex power signal. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE, pp. 8335–8339, May 2019. https://doi.org/10.1109/ICASSP.2019.8682543 Harell, A., Makonin, S., Bajic, I.V.: Wavenilm: a causal neural network for power disaggregation from the complex power signal. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE, pp. 8335–8339, May 2019. https://​doi.​org/​10.​1109/​ICASSP.​2019.​8682543
72.
go back to reference Kaselimi, M., Voulodimos, A., Protopapadakis, E., Doulamis, N., Doulamis, A.: EnerGAN: a generative adversarial network for energy disaggregation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain: IEEE, pp. 1578–1582, May 2020. https://doi.org/10.1109/ICASSP40776.2020.9054342 Kaselimi, M., Voulodimos, A., Protopapadakis, E., Doulamis, N., Doulamis, A.: EnerGAN: a generative adversarial network for energy disaggregation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain: IEEE, pp. 1578–1582, May 2020. https://​doi.​org/​10.​1109/​ICASSP40776.​2020.​9054342
74.
76.
go back to reference Zou, M., Zhu, S., Gu, J., Korunovic, L.M., Djokic, S.Z.: Heating and lighting load disaggregation using frequency components and convolutional bidirectional long short-term memory method. Energies 14(16), Art. no. 16, Jan. 2021. https://doi.org/10.3390/en14164831 Zou, M., Zhu, S., Gu, J., Korunovic, L.M., Djokic, S.Z.: Heating and lighting load disaggregation using frequency components and convolutional bidirectional long short-term memory method. Energies 14(16), Art. no. 16, Jan. 2021. https://​doi.​org/​10.​3390/​en14164831
77.
go back to reference Hosseini, S.S., Delcroix, B., Henao, N., Agbossou, K., Kelouwani, S.: A case study on obstacles to feasible NILM solutions for energy disaggregation in quebec residences. Power 2, 4 (2022) Hosseini, S.S., Delcroix, B., Henao, N., Agbossou, K., Kelouwani, S.: A case study on obstacles to feasible NILM solutions for energy disaggregation in quebec residences. Power 2, 4 (2022)
79.
go back to reference Zaouali, K., Ammari, M.L., Bouallegue, R.: LSTM-based reinforcement q learning model for non intrusive load monitoring. In: Barolli, L., Hussain, F., Enokido, T. (eds.) Advanced Information Networking and Applications, pp. 1–13. Lecture Notes in Networks and Systems. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99619-2_1 Zaouali, K., Ammari, M.L., Bouallegue, R.: LSTM-based reinforcement q learning model for non intrusive load monitoring. In: Barolli, L., Hussain, F., Enokido, T. (eds.) Advanced Information Networking and Applications, pp. 1–13. Lecture Notes in Networks and Systems. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-030-99619-2_​1
Metadata
Title
Advances in Machine-Learning Based Disaggregation of Building Heating Loads: A Review
Authors
Synne Krekling Lien
Behzad Najafi
Jayaprakash Rajasekharan
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-48649-4_11

Premium Partner