Skip to main content
Top
Published in: Acta Mechanica 9/2019

03-07-2019 | Original Paper

Air-assisted impact of water drops on a surface

Authors: Ramesh Kumar Singh, Deepak Kumar Mandal

Published in: Acta Mechanica | Issue 9/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The impact of a drop when airflow is incident on the surface is studied. A polymethyl methacrylate (PMMA) substrate is chosen for the study, and a drop of water is made to fall from various heights. Airflow of various velocities is focused towards the surface when the drop impacts. It is found that generally the maximum spreading diameter increases with the Reynolds number of the airflow \(({ Re}_{\mathrm{air}})\) for a given impact Weber number \(({ We}_{\mathrm{water}})\), compared to still air. However, the maximum spreading diameter reduces suddenly and becomes almost equal to that of still air for a critical \({ We}_{\mathrm{water}}\) and \({ Re}_{\mathrm{air}}\) tested. Maximum spreading reduces further when \({ We}_{\mathrm{water}}\) is further increased while keeping \({ Re}_{\mathrm{air}}\) same. The reason is found to be the sudden increase in the rim thickness. It is known that with increasing \({ We}_{\mathrm{water}}\), the viscous force and surface tension restrict the radial flow and result in the formation of the rim at the periphery. For the present case, the restriction in the radial flow occurs due to the imposed air pressure around the drop, as well. As the rim of the drop expands outward, the pressure restricts the motion, resulting in the gain in momentum in the vertical direction, i.e. a thick finger forms at the periphery of the drop. The thicker rim flows at slower pace reducing the viscous dissipation. The rise in rebound height decreases, whereas the time of recoiling increases with \({ Re}_{\mathrm{air}}\) as well.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ukiwe, C., Kwok, D.Y.: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21, 666–673 (2005)CrossRef Ukiwe, C., Kwok, D.Y.: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21, 666–673 (2005)CrossRef
2.
go back to reference Pasandideh-Fard, M., Qiao, Y.M., Chandra, S., Mostaghimi, J.: Capillary effects during droplet impact on a solid surface. Phys. Fluids 8, 650–659 (1996)CrossRef Pasandideh-Fard, M., Qiao, Y.M., Chandra, S., Mostaghimi, J.: Capillary effects during droplet impact on a solid surface. Phys. Fluids 8, 650–659 (1996)CrossRef
3.
go back to reference Chandra, S., Avedisian, C.T.: On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 432, 13–41 (1991)CrossRef Chandra, S., Avedisian, C.T.: On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 432, 13–41 (1991)CrossRef
4.
go back to reference Rioboo, R., Tropea, C., Marengo, M.: Outcomes from a drop impact on a solid surfaces. At. Sprays 11(1), 55–65 (2001) Rioboo, R., Tropea, C., Marengo, M.: Outcomes from a drop impact on a solid surfaces. At. Sprays 11(1), 55–65 (2001)
5.
go back to reference Roisman, I.V., Rioboo, R., Tropea, C.: Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. A Math. Phys. Eng. Sci. 458, 1411–1430 (2002)CrossRefMATH Roisman, I.V., Rioboo, R., Tropea, C.: Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. A Math. Phys. Eng. Sci. 458, 1411–1430 (2002)CrossRefMATH
6.
go back to reference Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C.M., Miyatake, O.: Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys. Fluids 5, 2588–2599 (1992)CrossRefMATH Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C.M., Miyatake, O.: Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys. Fluids 5, 2588–2599 (1992)CrossRefMATH
8.
go back to reference Collings, E.W., Markwonh, A.J., McCoy, J.K., Saunders, J.H.: Splat quench solidification of freely falling liquid–metal drops by impact on a planar substrate. J. Mater. Sci. 25, 3677–3682 (1990)CrossRef Collings, E.W., Markwonh, A.J., McCoy, J.K., Saunders, J.H.: Splat quench solidification of freely falling liquid–metal drops by impact on a planar substrate. J. Mater. Sci. 25, 3677–3682 (1990)CrossRef
9.
go back to reference Worthington, A.M.: On the forms assumed by drops of liquid falling on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1876) Worthington, A.M.: On the forms assumed by drops of liquid falling on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1876)
10.
go back to reference Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C.M.: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modelling. Phys. Fluids 7, 236–247 (1995)CrossRef Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C.M.: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modelling. Phys. Fluids 7, 236–247 (1995)CrossRef
11.
go back to reference Kim, H., Chun, J.: The recoiling of liquid droplets upon collision with solid surfaces. Phys. Fluids 13, 643–659 (2001)CrossRefMATH Kim, H., Chun, J.: The recoiling of liquid droplets upon collision with solid surfaces. Phys. Fluids 13, 643–659 (2001)CrossRefMATH
12.
go back to reference Xu, L., Zhang, W., Nagel, S.: Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505 (2005)CrossRef Xu, L., Zhang, W., Nagel, S.: Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505 (2005)CrossRef
13.
go back to reference Kim, H., Park, U., Lee, C.: Drop splashing on a rough surface: how surface morphology affects splashing threshold. Appl. Phys. Lett. 104, 161608 (2014)CrossRef Kim, H., Park, U., Lee, C.: Drop splashing on a rough surface: how surface morphology affects splashing threshold. Appl. Phys. Lett. 104, 161608 (2014)CrossRef
14.
go back to reference Xu, L.: Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75(056316), 1–8 (2007) Xu, L.: Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75(056316), 1–8 (2007)
15.
go back to reference Delplanque, T., Rangel, R.H.: An improved model for droplet solidification on a flat surface. J. Mater. Sci. 32(6), 1519–1530 (1997)CrossRef Delplanque, T., Rangel, R.H.: An improved model for droplet solidification on a flat surface. J. Mater. Sci. 32(6), 1519–1530 (1997)CrossRef
16.
go back to reference Bergeron, V., Bonn, D., Martin, J.Y., Vovelle, L.: Controlling droplet deposition with polymer additives. Nature 405(6788), 772–775 (2000)CrossRef Bergeron, V., Bonn, D., Martin, J.Y., Vovelle, L.: Controlling droplet deposition with polymer additives. Nature 405(6788), 772–775 (2000)CrossRef
17.
go back to reference Clanet, C., Beguin, C., Richard, D., Quere, D.: Maximum deformation of an impacting drop. J. Fluid Mech. 517, 199–208 (2004)CrossRefMATH Clanet, C., Beguin, C., Richard, D., Quere, D.: Maximum deformation of an impacting drop. J. Fluid Mech. 517, 199–208 (2004)CrossRefMATH
18.
go back to reference Gao, X., Li, R.: Spreading and recoiling of liquid droplets impacting solid surfaces. AICHE J. 60(7), 2683–2691 (2014)CrossRef Gao, X., Li, R.: Spreading and recoiling of liquid droplets impacting solid surfaces. AICHE J. 60(7), 2683–2691 (2014)CrossRef
19.
go back to reference Mao, T., Kuhn, D.C.S., Tran, H.: Spread and rebound of liquid droplets upon impact on flat surfaces. AICHE J. 43(9), 2169–2179 (1997)CrossRef Mao, T., Kuhn, D.C.S., Tran, H.: Spread and rebound of liquid droplets upon impact on flat surfaces. AICHE J. 43(9), 2169–2179 (1997)CrossRef
20.
go back to reference Sikalo, S., Ganic, E.N.: Phenomena of droplet surface interactions. Exp. Therm. Fluid Sci. 31(2), 97–110 (2006)CrossRef Sikalo, S., Ganic, E.N.: Phenomena of droplet surface interactions. Exp. Therm. Fluid Sci. 31(2), 97–110 (2006)CrossRef
21.
go back to reference Pan, K.L., Tseng, K.C., Wang, C.H.: Break up of a droplet at high velocity impacting a solid surface. Exp. Fluids 48, 143–156 (2010)CrossRef Pan, K.L., Tseng, K.C., Wang, C.H.: Break up of a droplet at high velocity impacting a solid surface. Exp. Fluids 48, 143–156 (2010)CrossRef
22.
go back to reference Mashayek, A., Ashgriz, N.: Handbook of Atomization and Sprays. Springer, USA (2011) Mashayek, A., Ashgriz, N.: Handbook of Atomization and Sprays. Springer, USA (2011)
23.
go back to reference Duguid Jr., H.A., Stampfer, J.F.: The evaporation rates of small, freely falling water drops. J. Atmos. Sci. 28, 1233–1243 (1971)CrossRef Duguid Jr., H.A., Stampfer, J.F.: The evaporation rates of small, freely falling water drops. J. Atmos. Sci. 28, 1233–1243 (1971)CrossRef
24.
go back to reference Kolinski, M.J.: The Role of Air in Droplet Impact on a Smooth, Solid Surface. Doctoral dissertation, Harvard University (2015) Kolinski, M.J.: The Role of Air in Droplet Impact on a Smooth, Solid Surface. Doctoral dissertation, Harvard University (2015)
25.
go back to reference Liu, J., Vu, H., Yoon, S.S., Jepsen, R.A., Aguilar, G.: Splashing phenomena during liquid droplet impact. At. Sprays 20, 297–310 (2010)CrossRef Liu, J., Vu, H., Yoon, S.S., Jepsen, R.A., Aguilar, G.: Splashing phenomena during liquid droplet impact. At. Sprays 20, 297–310 (2010)CrossRef
26.
go back to reference Diaz, A.J., Ortega, A.: Gas-assisted droplet impact on a solid surface. J. Fluids Eng. 138, 081104 (2016)CrossRef Diaz, A.J., Ortega, A.: Gas-assisted droplet impact on a solid surface. J. Fluids Eng. 138, 081104 (2016)CrossRef
27.
go back to reference Ebrahim, M., Ortega, A.: Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high Weber number. Exp. Therm. Fluid Sci. 80, 168–180 (2017)CrossRef Ebrahim, M., Ortega, A.: Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high Weber number. Exp. Therm. Fluid Sci. 80, 168–180 (2017)CrossRef
28.
go back to reference Diaz, A.J., Ortega, A.: Investigation of a gas-propelled liquid droplet impinging onto a heated surface. Int. J. Heat Mass Transf. 67, 1181–1190 (2013)CrossRef Diaz, A.J., Ortega, A.: Investigation of a gas-propelled liquid droplet impinging onto a heated surface. Int. J. Heat Mass Transf. 67, 1181–1190 (2013)CrossRef
29.
go back to reference Ebrahim, M., Ortega, A.: An experimental technique for accelerating a single liquid droplet to high impact velocities against a solid target surface using a propellant gas. Exp. Therm. Fluid Sci. 81, 202–208 (2017)CrossRef Ebrahim, M., Ortega, A.: An experimental technique for accelerating a single liquid droplet to high impact velocities against a solid target surface using a propellant gas. Exp. Therm. Fluid Sci. 81, 202–208 (2017)CrossRef
30.
go back to reference Ebrahim, M., Ortega, A., Delbosc, N., Wilson, M.C.T., Summers, J.L.: Simulation of the spreading of a gas-propelled micro-droplet upon impact on a dry surface using a lattice-Boltzmann approach. Phys. Fluids 29, 072104 (2017)CrossRef Ebrahim, M., Ortega, A., Delbosc, N., Wilson, M.C.T., Summers, J.L.: Simulation of the spreading of a gas-propelled micro-droplet upon impact on a dry surface using a lattice-Boltzmann approach. Phys. Fluids 29, 072104 (2017)CrossRef
31.
go back to reference Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRef Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRef
32.
go back to reference Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 17, 1–3 (1988) Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 17, 1–3 (1988)
33.
go back to reference Thoroddsen, S.T., Sakakibara, J.: Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 1359–1374 (1998)CrossRef Thoroddsen, S.T., Sakakibara, J.: Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 1359–1374 (1998)CrossRef
34.
go back to reference Allen, R.F.: The role of surface tension in splashing. J. Colloid Interface Sci. 51, 350–351 (1975)CrossRef Allen, R.F.: The role of surface tension in splashing. J. Colloid Interface Sci. 51, 350–351 (1975)CrossRef
Metadata
Title
Air-assisted impact of water drops on a surface
Authors
Ramesh Kumar Singh
Deepak Kumar Mandal
Publication date
03-07-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 9/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02438-3

Other articles of this Issue 9/2019

Acta Mechanica 9/2019 Go to the issue

Premium Partners