Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

16-06-2021

AKH-NFIS: Adaptive Krill Herd Network Fuzzy Inference System for Mobile Robot Navigation

Authors: Madhu Sudan Das, Anu Samanta, Sourish Sanyal, Sanjoy Mandal

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mobile robot navigation has been a current issue in the most recent two decades. Mobile robots are necessary to explore in obscure and dynamic situations. To solve the aforementioned issues an extended Kalman filter (EKF) and adaptive Krill Herd network fuzzy inference system (AKH-NFIS) techniques are proposed for the self-sufficient portable robot route. This is in charge of avoidance of obstacles in an obscure static and dynamic environment. Initially, the start and goal position will be set and the obstacles identified in front of the robot will be checked using the sensor. This sensor captures the environmental information around the mobile robot. Subsequently, to deal with the filtering problem of sensor data, EKF will be used. By EKF more accurate position estimation will be obtained by using dynamic information of data. Subsequently, the obstacle distances from the robot and the obstacle avoidance angle are calculated and fed as input to the training dataset. This training data set trains AKH-NFIS controller obtained by designing a Krill herd optimization algorithm adaptive network fuzzy logic-based navigation controller. The left wheel velocity and right wheel velocity are the output from the proposed system. The robustness of the proposed navigation controller will be assessed by exploring the mobile robot in various conditions. The experimental result demonstrates that our proposed strategy outperforms by correlation with existing strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wai, R.-J., & Lin, Y.-W. (2013). Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network. IEEE Trans. Fuzzy Systems, 21(4), 688–701.CrossRef Wai, R.-J., & Lin, Y.-W. (2013). Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network. IEEE Trans. Fuzzy Systems, 21(4), 688–701.CrossRef
2.
go back to reference Pandey, A., & Parhi, D. R. (2014). MATLAB simulation for mobile robot navigation with hurdles in cluttered environment using minimum rule-based fuzzy logic controller. Procedia Technology, 14, 28–34.CrossRef Pandey, A., & Parhi, D. R. (2014). MATLAB simulation for mobile robot navigation with hurdles in cluttered environment using minimum rule-based fuzzy logic controller. Procedia Technology, 14, 28–34.CrossRef
3.
go back to reference Mac, T. T., Copot, C., & Tran, D. T. (2016). De Keyser R 2016 Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86, 13–28.CrossRef Mac, T. T., Copot, C., & Tran, D. T. (2016). De Keyser R 2016 Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86, 13–28.CrossRef
4.
go back to reference Algabri, M., Mathkour, H., Ramdane, H., & Alsulaiman, M. (2015). Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Computers in Human Behavior, 50, 42–56.CrossRef Algabri, M., Mathkour, H., Ramdane, H., & Alsulaiman, M. (2015). Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Computers in Human Behavior, 50, 42–56.CrossRef
5.
go back to reference Deepak, B. B. V. L., Parhi, D. R., & Raju, B. M. V. A. (2014). Advance particle swarm optimization-based navigational controller for mobile robot. Arabian Journal for Science and Engineering, 39(8), 6477–6487.CrossRef Deepak, B. B. V. L., Parhi, D. R., & Raju, B. M. V. A. (2014). Advance particle swarm optimization-based navigational controller for mobile robot. Arabian Journal for Science and Engineering, 39(8), 6477–6487.CrossRef
6.
go back to reference Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47–58.CrossRef Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47–58.CrossRef
7.
go back to reference Mohanty, P. K., & Parhi, D. R. (2014). A new intelligent motion planning for mobile robot navigation using multiple adaptive neuro-fuzzy inference system. Applied Mathematics & Information Sciences, 8(5), 2527.CrossRef Mohanty, P. K., & Parhi, D. R. (2014). A new intelligent motion planning for mobile robot navigation using multiple adaptive neuro-fuzzy inference system. Applied Mathematics & Information Sciences, 8(5), 2527.CrossRef
8.
go back to reference Pandey, A., Sonkar, R. K., Pandey, K. K., & Parhi, D. R. (2014). Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller. In 2014 IEEE 8th international conference on intelligent systems and control (ISCO) (pp. 39–41). IEEE, 2014. Pandey, A., Sonkar, R. K., Pandey, K. K., & Parhi, D. R. (2014). Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller. In 2014 IEEE 8th international conference on intelligent systems and control (ISCO) (pp. 39–41). IEEE, 2014.
9.
go back to reference Meléndez, A., & Castillo, O. (2013). Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. In O. Castillo, P. Melin, & J. Kacprzyk (Eds.), Recent advances on hybrid intelligent systems. Studies in Computational Intelligence (Vol. 451, pp. 21–31). Berlin, Heidelberg: Springer. Meléndez, A., & Castillo, O. (2013). Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. In O. Castillo, P. Melin, & J. Kacprzyk (Eds.), Recent advances on hybrid intelligent systems. Studies in Computational Intelligence (Vol. 451, pp. 21–31). Berlin, Heidelberg: Springer.
10.
go back to reference Farooq, U., Amar, M., Asad, M. U., Hanif, A., & Saleh, S. O. (2014). Design and implementation of neural network based controller for mobile robot navigation in unknown environments. International Journal of Computer and Electrical Engineering, 6(2), 83.CrossRef Farooq, U., Amar, M., Asad, M. U., Hanif, A., & Saleh, S. O. (2014). Design and implementation of neural network based controller for mobile robot navigation in unknown environments. International Journal of Computer and Electrical Engineering, 6(2), 83.CrossRef
11.
go back to reference Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2013). Adaptive neuro-fuzzy control of a spherical rolling robot using sliding-mode-control-theory-based online learning algorithm.". IEEE Transactions on Cybernetics, 43(1), 170–179.CrossRef Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2013). Adaptive neuro-fuzzy control of a spherical rolling robot using sliding-mode-control-theory-based online learning algorithm.". IEEE Transactions on Cybernetics, 43(1), 170–179.CrossRef
12.
go back to reference Algabri, M., Mathkour, H., & Ramdane, H. (2014). Mobile robot navigation and obstacle-avoidance using ANFIS in unknown environment. International Journal of Computer Applications, 91, 14.CrossRef Algabri, M., Mathkour, H., & Ramdane, H. (2014). Mobile robot navigation and obstacle-avoidance using ANFIS in unknown environment. International Journal of Computer Applications, 91, 14.CrossRef
13.
go back to reference Pandey, A., Kumar, S., Pandey, K. K., & Parh, D. R. (2016). Mobile robot navigation in unknown static environments using ANFIS controller. Perspectives in Science, 8, 421–423.CrossRef Pandey, A., Kumar, S., Pandey, K. K., & Parh, D. R. (2016). Mobile robot navigation in unknown static environments using ANFIS controller. Perspectives in Science, 8, 421–423.CrossRef
14.
go back to reference Faisal, M., Hedjar, R., Sulaiman, M. A., & Al-Mutib, K. (2013). Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. International Journal of Advanced Robotic Systems, 10(1), 37.CrossRef Faisal, M., Hedjar, R., Sulaiman, M. A., & Al-Mutib, K. (2013). Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. International Journal of Advanced Robotic Systems, 10(1), 37.CrossRef
15.
go back to reference Sanchez, M. A., Castillo, O., & Castro, J. R. (2015). Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Systems with Applications, 42(14), 5904–5914.CrossRef Sanchez, M. A., Castillo, O., & Castro, J. R. (2015). Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Systems with Applications, 42(14), 5904–5914.CrossRef
16.
go back to reference Castillo, O., & Melin, P. (2014). A review on interval type-2 fuzzy logic applications in intelligent control. Information Sciences, 279, 615–631.MathSciNetCrossRef Castillo, O., & Melin, P. (2014). A review on interval type-2 fuzzy logic applications in intelligent control. Information Sciences, 279, 615–631.MathSciNetCrossRef
17.
go back to reference Rezaee, H., & Abdollahi, F. (2014). A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, 61(1), 347–354.CrossRef Rezaee, H., & Abdollahi, F. (2014). A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, 61(1), 347–354.CrossRef
18.
go back to reference Pothal, J. K., & Parhi, D. R. (2015). Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system. Robotics and Autonomous Systems, 72, 48–58.CrossRef Pothal, J. K., & Parhi, D. R. (2015). Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system. Robotics and Autonomous Systems, 72, 48–58.CrossRef
19.
go back to reference Parhi, D. R., & Mohanty, P. K. (2016). IWO-based adaptive neuro-fuzzy controller for mobile robot navigation in cluttered environments. The International Journal of Advanced Manufacturing Technology, 83(9–12), 1607–1625.CrossRef Parhi, D. R., & Mohanty, P. K. (2016). IWO-based adaptive neuro-fuzzy controller for mobile robot navigation in cluttered environments. The International Journal of Advanced Manufacturing Technology, 83(9–12), 1607–1625.CrossRef
20.
go back to reference Mohanty, P. K., & Parhi, D. R. (2015). A new hybrid intelligent path planner for mobile robot navigation based on adaptive neuro-fuzzy inference system. Australian Journal of Mechanical Engineering, 13(3), 195–207.CrossRef Mohanty, P. K., & Parhi, D. R. (2015). A new hybrid intelligent path planner for mobile robot navigation based on adaptive neuro-fuzzy inference system. Australian Journal of Mechanical Engineering, 13(3), 195–207.CrossRef
21.
go back to reference Mohanty, P. K., & Parhi, D. R. (2015). A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memetic Computing, 7(4), 255–273.CrossRef Mohanty, P. K., & Parhi, D. R. (2015). A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memetic Computing, 7(4), 255–273.CrossRef
22.
go back to reference Wang, D., Yuhang, H., & Ma, T. (2020). Mobile robot navigation with the combination of supervised learning in cerebellum and reward-based learning in basal ganglia. Cognitive Systems Research, 59, 1–14.CrossRef Wang, D., Yuhang, H., & Ma, T. (2020). Mobile robot navigation with the combination of supervised learning in cerebellum and reward-based learning in basal ganglia. Cognitive Systems Research, 59, 1–14.CrossRef
23.
go back to reference Ponce, H., Moya-Albor, E., Martínez-Villaseñor, L., & Brieva, J. (2020). Distributed evolutionary learning control for mobile robot navigation based on virtual and physical agents. Simulation Modelling Practice and Theory, 102, 102058.CrossRef Ponce, H., Moya-Albor, E., Martínez-Villaseñor, L., & Brieva, J. (2020). Distributed evolutionary learning control for mobile robot navigation based on virtual and physical agents. Simulation Modelling Practice and Theory, 102, 102058.CrossRef
24.
go back to reference Kim, C., & Won, J.-S. (2020). A fuzzy analytic hierarchy process and cooperative game theory combined multiple mobile robot navigation algorithm. Sensors, 20(10), 2827.CrossRef Kim, C., & Won, J.-S. (2020). A fuzzy analytic hierarchy process and cooperative game theory combined multiple mobile robot navigation algorithm. Sensors, 20(10), 2827.CrossRef
25.
go back to reference Zhang, Y., Zhang, C.-H., & Shao, X. (2021). User preference-aware navigation for mobile robot in domestic via defined virtual area. Journal of Network and Computer Applications, 173, 102885.CrossRef Zhang, Y., Zhang, C.-H., & Shao, X. (2021). User preference-aware navigation for mobile robot in domestic via defined virtual area. Journal of Network and Computer Applications, 173, 102885.CrossRef
26.
go back to reference Chen, C.-H., Lin, C.-J., Jeng, S.-Y., Lin, H.-Y., & Cheng-Yi, Yu. (2021). Using ultrasonic sensors and a knowledge-based neural fuzzy controller for mobile robot navigation control. Electronics, 10(4), 466.CrossRef Chen, C.-H., Lin, C.-J., Jeng, S.-Y., Lin, H.-Y., & Cheng-Yi, Yu. (2021). Using ultrasonic sensors and a knowledge-based neural fuzzy controller for mobile robot navigation control. Electronics, 10(4), 466.CrossRef
27.
go back to reference Kowalski, P. A., & Łukasik, S. (2015). Experimental study of selected parameters of the krill herd algorithm. In Intelligent Systems' 2014 (pp. 473–485). Cham: Springer. Kowalski, P. A., & Łukasik, S. (2015). Experimental study of selected parameters of the krill herd algorithm. In Intelligent Systems' 2014 (pp. 473–485). Cham: Springer.
28.
go back to reference Karaboga, D., & Kaya, E. (2019). Training ANFIS by using an adaptive and hybrid artificial bee colony algorithm (aABC) for the identification of nonlinear static systems. Arabian Journal for Science and Engineering, 44(4), 3531–3547.CrossRef Karaboga, D., & Kaya, E. (2019). Training ANFIS by using an adaptive and hybrid artificial bee colony algorithm (aABC) for the identification of nonlinear static systems. Arabian Journal for Science and Engineering, 44(4), 3531–3547.CrossRef
29.
go back to reference Pal, D., & Bhagat, S. K. (2020). Design and analysis of optimization based integrated ANFIS-PID controller for networked controlled systems (NCSs). Cogent Engineering, 7(1), 1772944.CrossRef Pal, D., & Bhagat, S. K. (2020). Design and analysis of optimization based integrated ANFIS-PID controller for networked controlled systems (NCSs). Cogent Engineering, 7(1), 1772944.CrossRef
30.
go back to reference Ibrahim, A. A., Zhou, H.-b, Tan, S.-x, Zhang, C.-l, & Duan, J.-a. (2020). Regulated Kalman filter based training of an interval type-2 fuzzy system and its evaluation. Engineering Applications of Artificial Intelligence, 95, 103867CrossRef Ibrahim, A. A., Zhou, H.-b, Tan, S.-x, Zhang, C.-l, & Duan, J.-a. (2020). Regulated Kalman filter based training of an interval type-2 fuzzy system and its evaluation. Engineering Applications of Artificial Intelligence, 95, 103867CrossRef
Metadata
Title
AKH-NFIS: Adaptive Krill Herd Network Fuzzy Inference System for Mobile Robot Navigation
Authors
Madhu Sudan Das
Anu Samanta
Sourish Sanyal
Sanjoy Mandal
Publication date
16-06-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08619-5

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue