Skip to main content
Top

2017 | OriginalPaper | Chapter

13. Algebraic Field Extensions

Author : Alexey L. Gorodentsev

Published in: Algebra II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recall that a field extension \(\mathbb{k} \subset \mathbb{F}\) is said to be finite of degree d if \(\mathbb{F}\) has dimension d <  as a vector space over \(\mathbb{k}\). We write \(\deg \mathbb{F}/\mathbb{k} = d\) in this case.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Compare with Sect. 3.​4 of Algebra I.
 
2
Recall that the discriminant of a monic polynomial f(x) = (xϑ i) is the product \(D(\,f)\stackrel{\mathrm{def}}{=}\prod _{i<j}(\vartheta _{i} -\vartheta _{j})^{2}\) expressed as a polynomial in the coefficients of f.
 
3
See Sect. 3.3.3 of Algebra I.
 
4
See Sect. 2.4.3 of Algebra I.
 
5
The same argument shows that every finite field, considered as an algebra over a subfield, is generated by one element. Although the separability assumption is not used explicitly in this case, we know from Example 3.4 of Algebra I that all finite fields are separable over their prime subfields.
 
6
Recall that the degree \(\deg _{\mathbb{k}}a\) of an algebraic element a over a field \(\mathbb{k}\) is the degree of the minimal polynomial μ a of a over \(\mathbb{k}\).
 
7
See Lemma 1.​3 of Algebra I.
 
8
Automatically distinct.
 
9
See Lemma 1.​1 of Algebra I.
 
10
That is, there exists an isomorphism between them acting on \(\mathbb{k}\) identically.
 
11
Such an extension exists by Theorem 3.1 of Algebra I.
 
12
With respect to inclusions.
 
13
Note that k may be less than m, because the adjunction of a root may cause the appearance of several more roots.
 
14
Or equivalently, algebraic.
 
15
See Problem 1.20 of Algebra I.
 
16
See Sect. 1.4.2 of Algebra I.
 
17
See Exercise 1.16 in Sect. 1.4.2 of Algebra I.
 
18
It is isomorphic to \(\mathbb{Q}\) for \(\mathop{\mathrm{char}}\nolimits (\mathbb{k}) = 0\), and to \(\mathbb{F}_{p} = \mathbb{Z}/(p)\) for \(\mathop{\mathrm{char}}\nolimits (\mathbb{k}) = p > 0\); see Sect. 2.8.1 of Algebra I.
 
19
The proof of Theorem 13.6 is based on Corollary 13.1 on p. 13.1, a direct corollary of Theorem 13.2.
 
20
See Exercise 11.14 on p. 256.
 
21
See Example 12.​4 of Algebra I.
 
22
Recall that every subfield \(\mathbb{F} \subset \mathbb{k}(t)\) strictly larger than \(\mathbb{k}\) is isomorphic to \(\mathbb{k}(\,f)\) for some \(f \in \mathbb{k}(t)\) by Lüroth’s theorem; see Theorem 10.​4 on p. 239.
 
23
Note that even if these eigenvectors are not defined over \(\mathbb{k}\), the G-invariant polynomial with roots at these points has to lie in \(\mathbb{k}[t_{0},t_{1}]\).
 
24
The rational functions of t = t 0t 1 are exactly those polynomials.
 
25
Instead of Corollary 13.3, we could have used Theorem 13.6, which says that the extension \(\mathbb{K}^{H} \subset \mathbb{K}\) is a Galois extension with Galois group H for every subgroup H ⊂ G.
 
26
Recall that we write D n for the group of the regular n-gon, which has order 2n; see Example 12.​4 of Algebra I.
 
27
Note that this model of \(\mathbb{P}_{1}(\mathbb{C})\) differs slightly from that used in Example 11.​1 of Algebra I, where the sphere of diameter 1 was projected from the north and south poles onto the tangent planes drawn through the opposite poles.
 
28
That is, bijections \(M\stackrel{\sim }{\rightarrow }M\) induced by the orientation-preserving linear isometries \(\mathbb{R}^{3}\stackrel{\sim }{\rightarrow }\mathbb{R}^{3}\); see Sect. 12.​3 of Algebra I.
 
29
In this case, the extension \(\mathbb{K} \supset \mathbb{k}\) is called purely inseparable.
 
Literature
[DK]
go back to reference Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269–334.MathSciNetCrossRef Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269–334.MathSciNetCrossRef
[Fu]
go back to reference Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.MATH Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.MATH
[FH]
go back to reference Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.MATH Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.MATH
[Mo]
go back to reference Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977. Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977.
Metadata
Title
Algebraic Field Extensions
Author
Alexey L. Gorodentsev
Copyright Year
2017
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-50853-5_13

Premium Partner