Skip to main content
Top

2013 | OriginalPaper | Chapter

15. Algorithms for ℓ1-Minimization

Authors : Simon Foucart, Holger Rauhut

Published in: A Mathematical Introduction to Compressive Sensing

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a selection of three algorithms designed specifically to compute solutions of 1-minimization problems. The algorithms, chosen with simplicity of analysis and diversity of techniques in mind, are the homotopy method, Chambolle and Pock’s primal–dual algorithm, and the iteratively reweighted least squares algorithm. Other algorithms are also mentioned but discussed in less detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference M. Afonso, J. Bioucas Dias, M. Figueiredo, Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)MathSciNetCrossRef M. Afonso, J. Bioucas Dias, M. Figueiredo, Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)MathSciNetCrossRef
20.
go back to reference K. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-linear Programming (Stanford University Press, Stanford, California, 1958)MATH K. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-linear Programming (Stanford University Press, Stanford, California, 1958)MATH
32.
go back to reference S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012)MathSciNetMATHCrossRef S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012)MathSciNetMATHCrossRef
34.
go back to reference H. Bauschke, P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011) H. Bauschke, P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011)
36.
go back to reference A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)MathSciNetMATHCrossRef A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)MathSciNetMATHCrossRef
37.
go back to reference A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)MathSciNetCrossRef A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)MathSciNetCrossRef
38.
go back to reference S. Becker, J. Bobin, E.J. Candès, NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)MathSciNetMATHCrossRef S. Becker, J. Bobin, E.J. Candès, NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)MathSciNetMATHCrossRef
44.
go back to reference D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Athena Scientific, Cambridge, MA, 1997) D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Athena Scientific, Cambridge, MA, 1997)
49.
go back to reference E. Birgin, J. Martínez, M. Raydan, Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23(4), 539–559 (2003)MathSciNetMATHCrossRef E. Birgin, J. Martínez, M. Raydan, Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23(4), 539–559 (2003)MathSciNetMATHCrossRef
70.
go back to reference S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)MATHCrossRef S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)MATHCrossRef
71.
79.
go back to reference M. Burger, M. Moeller, M. Benning, S. Osher, An adaptive inverse scale space method for compressed sensing. Math. Comp. 82(281), 269–299 (2013)MathSciNetMATHCrossRef M. Burger, M. Moeller, M. Benning, S. Osher, An adaptive inverse scale space method for compressed sensing. Math. Comp. 82(281), 269–299 (2013)MathSciNetMATHCrossRef
107.
go back to reference A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40, 120–145 (2011)MathSciNetMATHCrossRef A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40, 120–145 (2011)MathSciNetMATHCrossRef
109.
go back to reference R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)CrossRef R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)CrossRef
110.
go back to reference R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24(3), 1–14 (2008)MathSciNetCrossRef R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24(3), 1–14 (2008)MathSciNetCrossRef
111.
go back to reference R. Chartrand, W. Yin, Iteratively reweighted algorithms for compressive sensing. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Las Vegas, Nevada, USA, pp. 3869–3872, 2008 R. Chartrand, W. Yin, Iteratively reweighted algorithms for compressive sensing. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Las Vegas, Nevada, USA, pp. 3869–3872, 2008
121.
127.
go back to reference P. Combettes, J.-C. Pesquet, A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)CrossRef P. Combettes, J.-C. Pesquet, A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)CrossRef
128.
go back to reference P. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, ed. by H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz (Springer, New York, 2011), pp. 185–212 P. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, ed. by H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz (Springer, New York, 2011), pp. 185–212
129.
go back to reference P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting. Multiscale Model. Sim. 4(4), 1168–1200 (electronic) (2005) P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting. Multiscale Model. Sim. 4(4), 1168–1200 (electronic) (2005)
138.
go back to reference I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetMATHCrossRef I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetMATHCrossRef
139.
go back to reference I. Daubechies, R. DeVore, M. Fornasier, C. Güntürk, Iteratively re-weighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)MathSciNetMATHCrossRef I. Daubechies, R. DeVore, M. Fornasier, C. Güntürk, Iteratively re-weighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)MathSciNetMATHCrossRef
140.
go back to reference I. Daubechies, M. Fornasier, I. Loris, Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14(5–6), 764–792 (2008)MathSciNetMATHCrossRef I. Daubechies, M. Fornasier, I. Loris, Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14(5–6), 764–792 (2008)MathSciNetMATHCrossRef
169.
go back to reference D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theor. 54(11), 4789–4812 (2008)MathSciNetMATHCrossRef D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theor. 54(11), 4789–4812 (2008)MathSciNetMATHCrossRef
172.
go back to reference J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetMATHCrossRef J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetMATHCrossRef
186.
go back to reference H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Springer, New York, 1996)MATHCrossRef H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Springer, New York, 1996)MATHCrossRef
188.
go back to reference E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split Bregman. Preprint (2009) E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split Bregman. Preprint (2009)
196.
go back to reference M.A. Figueiredo, R.D. Nowak, An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)MathSciNetCrossRef M.A. Figueiredo, R.D. Nowak, An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)MathSciNetCrossRef
197.
go back to reference M.A. Figueiredo, R.D. Nowak, S. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Proces. 1(4), 586–598 (2007)CrossRef M.A. Figueiredo, R.D. Nowak, S. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Proces. 1(4), 586–598 (2007)CrossRef
201.
go back to reference M. Fornasier, Numerical methods for sparse recovery. In Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier. Radon Series on Computational and Applied Mathematics, vol. 9 (de Gruyter, Berlin, 2010), pp. 93–200 M. Fornasier, Numerical methods for sparse recovery. In Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier. Radon Series on Computational and Applied Mathematics, vol. 9 (de Gruyter, Berlin, 2010), pp. 93–200
203.
go back to reference M. Fornasier, H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46(2), 577–613 (2008)MathSciNetMATHCrossRef M. Fornasier, H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46(2), 577–613 (2008)MathSciNetMATHCrossRef
205.
go back to reference M. Fornasier, H. Rauhut, R. Ward, Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J. Optim. 21(4), 1614–1640 (2011)MathSciNetMATHCrossRef M. Fornasier, H. Rauhut, R. Ward, Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J. Optim. 21(4), 1614–1640 (2011)MathSciNetMATHCrossRef
216.
go back to reference D. Gabay, Applications of the method of multipliers to variational inequalities. In Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, ed. by M. Fortin, R. Glowinski (North-Holland, Amsterdam, 1983), pp. 299–331CrossRef D. Gabay, Applications of the method of multipliers to variational inequalities. In Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, ed. by M. Fortin, R. Glowinski (North-Holland, Amsterdam, 1983), pp. 299–331CrossRef
217.
go back to reference D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl. 2, 17–40 (1976)MATHCrossRef D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl. 2, 17–40 (1976)MATHCrossRef
226.
go back to reference R. Glowinski, T. Le, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics (SIAM, Philadelphia, 1989)MATHCrossRef R. Glowinski, T. Le, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics (SIAM, Philadelphia, 1989)MATHCrossRef
229.
go back to reference D. Goldfarb, S. Ma, Convergence of fixed point continuation algorithms for matrix rank minimization. Found. Comput. Math. 11(2), 183–210 (2011)MathSciNetMATHCrossRef D. Goldfarb, S. Ma, Convergence of fixed point continuation algorithms for matrix rank minimization. Found. Comput. Math. 11(2), 183–210 (2011)MathSciNetMATHCrossRef
230.
256.
go back to reference E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for ℓ 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)MathSciNetMATHCrossRef E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)MathSciNetMATHCrossRef
257.
go back to reference E. Hale, W. Yin, Y. Zhang, Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010)MathSciNetMATH E. Hale, W. Yin, Y. Zhang, Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010)MathSciNetMATH
264.
go back to reference B. He, X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)MathSciNetMATHCrossRef B. He, X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)MathSciNetMATHCrossRef
302.
go back to reference S. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, A method for large-scale l1-regularized least squares problems with applications in signal processing and statistics. IEEE J. Sel. Top. Signal Proces. 4(1), 606–617 (2007)CrossRef S. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, A method for large-scale l1-regularized least squares problems with applications in signal processing and statistics. IEEE J. Sel. Top. Signal Proces. 4(1), 606–617 (2007)CrossRef
303.
go back to reference J. King, A minimal error conjugate gradient method for ill-posed problems. J. Optim. Theor. Appl. 60(2), 297–304 (1989)MATHCrossRef J. King, A minimal error conjugate gradient method for ill-posed problems. J. Optim. Theor. Appl. 60(2), 297–304 (1989)MATHCrossRef
318.
go back to reference C. Lawson, Contributions to the Theory of Linear Least Maximum Approximation. PhD thesis, University of California, Los Angeles, 1961 C. Lawson, Contributions to the Theory of Linear Least Maximum Approximation. PhD thesis, University of California, Los Angeles, 1961
323.
go back to reference J. Lee, Y. Sun, M. Saunders, Proximal Newton-type methods for convex optimization. Preprint (2012) J. Lee, Y. Sun, M. Saunders, Proximal Newton-type methods for convex optimization. Preprint (2012)
324.
go back to reference B. Lemaire, The proximal algorithm. In New Methods in Optimization and Their Industrial Uses (Pau/Paris, 1987), Internationale Schriftenreihe Numerischen Mathematik, vol. 87 (Birkhäuser, Basel, 1989), pp. 73–87 B. Lemaire, The proximal algorithm. In New Methods in Optimization and Their Industrial Uses (Pau/Paris, 1987), Internationale Schriftenreihe Numerischen Mathematik, vol. 87 (Birkhäuser, Basel, 1989), pp. 73–87
328.
334.
go back to reference D. Lorenz, M. Pfetsch, A. Tillmann, Solving Basis Pursuit: Heuristic optimality check and solver comparison. Preprint (2011) D. Lorenz, M. Pfetsch, A. Tillmann, Solving Basis Pursuit: Heuristic optimality check and solver comparison. Preprint (2011)
335.
go back to reference I. Loris, L1Packv2: a Mathematica package in minimizing an ℓ 1-penalized functional. Comput. Phys. Comm. 179(12), 895–902 (2008)MathSciNetMATHCrossRef I. Loris, L1Packv2: a Mathematica package in minimizing an 1-penalized functional. Comput. Phys. Comm. 179(12), 895–902 (2008)MathSciNetMATHCrossRef
345.
go back to reference B. Martinet, Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4(Ser. R-3), 154–158 (1970) B. Martinet, Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4(Ser. R-3), 154–158 (1970)
365.
go back to reference A. Nemirovsky, D. Yudin, Problem Complexity and Method Efficiency in Optimization. A Wiley-Interscience Publication. (Wiley, New York, 1983) A. Nemirovsky, D. Yudin, Problem Complexity and Method Efficiency in Optimization. A Wiley-Interscience Publication. (Wiley, New York, 1983)
366.
go back to reference Y. Nesterov, A method for solving the convex programming problem with convergence rate O(1 ∕ k 2). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)MathSciNet Y. Nesterov, A method for solving the convex programming problem with convergence rate O(1 ∕ k 2). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)MathSciNet
367.
go back to reference Y. Nesterov, Smooth minimization of non-smooth functions. Math. Program. 103(1, Ser. A), 127–152 (2005) Y. Nesterov, Smooth minimization of non-smooth functions. Math. Program. 103(1, Ser. A), 127–152 (2005)
369.
go back to reference J. Nocedal, S. Wright, Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006) J. Nocedal, S. Wright, Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006)
375.
go back to reference M. Osborne, Finite Algorithms in Optimization and Data Analysis (Wiley, New York, 1985)MATH M. Osborne, Finite Algorithms in Optimization and Data Analysis (Wiley, New York, 1985)MATH
376.
go back to reference M. Osborne, B. Presnell, B. Turlach, A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000)MathSciNetMATHCrossRef M. Osborne, B. Presnell, B. Turlach, A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000)MathSciNetMATHCrossRef
377.
go back to reference M. Osborne, B. Presnell, B. Turlach, On the LASSO and its dual. J. Comput. Graph. Stat. 9(2), 319–337 (2000)MathSciNet M. Osborne, B. Presnell, B. Turlach, On the LASSO and its dual. J. Comput. Graph. Stat. 9(2), 319–337 (2000)MathSciNet
395.
go back to reference T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In IEEE International Conference Computer Vision (ICCV) 2011, pp. 1762 –1769, November 2011 T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In IEEE International Conference Computer Vision (ICCV) 2011, pp. 1762 –1769, November 2011
396.
go back to reference T. Pock, D. Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford-Shah functional. In ICCV Proceedings (Springer, Berlin, 2009) T. Pock, D. Cremers, H. Bischof, A. Chambolle, An algorithm for minimizing the Mumford-Shah functional. In ICCV Proceedings (Springer, Berlin, 2009)
405.
go back to reference H. Raguet, J. Fadili, G. Peyré, A generalized forward-backward splitting. Preprint (2011) H. Raguet, J. Fadili, G. Peyré, A generalized forward-backward splitting. Preprint (2011)
423.
446.
go back to reference S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)MathSciNetMATHCrossRef S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)MathSciNetMATHCrossRef
451.
go back to reference J.-L. Starck, F. Murtagh, J. Fadili, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University Press, Cambridge, 2010)CrossRef J.-L. Starck, F. Murtagh, J. Fadili, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University Press, Cambridge, 2010)CrossRef
493.
go back to reference E. van den Berg, M. Friedlander, Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)MathSciNetMATHCrossRef E. van den Berg, M. Friedlander, Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)MathSciNetMATHCrossRef
511.
go back to reference S. Worm, Iteratively re-weighted least squares for compressed sensing. Diploma thesis, University of Bonn, 2011 S. Worm, Iteratively re-weighted least squares for compressed sensing. Diploma thesis, University of Bonn, 2011
516.
go back to reference X. Zhang, M. Burger, X. Bresson, S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imag. Sci. 3(3), 253–276 (2010)MathSciNetMATHCrossRef X. Zhang, M. Burger, X. Bresson, S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imag. Sci. 3(3), 253–276 (2010)MathSciNetMATHCrossRef
517.
go back to reference X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011)MathSciNetMATHCrossRef X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011)MathSciNetMATHCrossRef
518.
go back to reference M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report, CAM Report 08–34, UCLA, Los Angeles, CA, 2008 M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report, CAM Report 08–34, UCLA, Los Angeles, CA, 2008
Metadata
Title
Algorithms for ℓ1-Minimization
Authors
Simon Foucart
Holger Rauhut
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-0-8176-4948-7_15

Premium Partner