Skip to main content
Top
Published in: Wireless Personal Communications 1/2018

09-02-2018

ALIC: A Low Overhead Compiler Optimization Prediction Model

Authors: Hui Liu, Rongcai Zhao, Qi Wang, Yingying Li

Published in: Wireless Personal Communications | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iterative compilation based on machine learning can automatically predict the best optimization for the new programs. However, the efficient prediction models often require repetitive training, which leads to a higher training time overheads, and greatly affects the widespread utilization of the technology. The existing approaches in the prediction model construction often use random sample search strategy, which easily lead to data redundancy. In addition, due to the effect of run-time noises, the sample program is subjected to a fixed number of repetitive observations. However, in the case there is very little noises, the repetitive observations will result in a serious waste of iterative compilation time overheads. Therefore, how to effectively collect the optimal prediction model samples and choose the appropriate sample observations number are the key problem of reducing the iterative compilation overheads. We propose a low overheads iterative compilation optimization parameters prediction model ALIC. First, we describe the target programs by static-dynamic features representation based on feature-class relevance, and construct an initial optimization prediction model by the classifier. Then we use a dynamic number of sample observations strategy for each sample. The most profitable sample from the candidate samples set is selected and marked, each mark is equivalent to increase the number of sample observations. Finally, the optimization prediction model is constructed based on the intermediate prediction model that learns candidate samples actively. The experimental results show that when predicting optimization parameters for the new programs on Intel Xeon E5520 and Chinese Shenwei 26010 platforms, the ALIC model generates 1.38× (by ICC14.0 compiler), 1.35× (by GCC5.4 compiler) average performance improvement on the Xeon platform, and 1.42× (by SW compiler) on the Shenwei Platform. In addition, the ALIC model can significantly reduce the iterative compilation training time overheads than the existing approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, Y., Fang, S. D., et al. (2012). Deconstructing iterative optimization. ACM Transactions on Architecture and Code Optimization (TACO), 9(3), 1–30.CrossRef Chen, Y., Fang, S. D., et al. (2012). Deconstructing iterative optimization. ACM Transactions on Architecture and Code Optimization (TACO), 9(3), 1–30.CrossRef
2.
go back to reference Fang, S. D., Xu, W. W., et al. (2015). Practical iterative optimization for the data center. ACM Transactions on Architecture and Code Optimization (TACO), 12(2), 1–26.CrossRef Fang, S. D., Xu, W. W., et al. (2015). Practical iterative optimization for the data center. ACM Transactions on Architecture and Code Optimization (TACO), 12(2), 1–26.CrossRef
3.
go back to reference Nobre, R., Martins, L. G., & Cardoso, J. M. (2015). Use of previously acquired positioning of optimizations for phase ordering exploration. In Proceedings of the 18th international workshop on software and compilers for embedded systems, pp. 58–67. Nobre, R., Martins, L. G., & Cardoso, J. M. (2015). Use of previously acquired positioning of optimizations for phase ordering exploration. In Proceedings of the 18th international workshop on software and compilers for embedded systems, pp. 58–67.
4.
go back to reference Li, F. Q., Tang, F. L., & Shen, Y. (2014). Feature mining for machine learning based compilation optimization. In Proceedings of the eighth international conference on innovative mobile and internet services in ubiquitous computing, pp. 207–214. Li, F. Q., Tang, F. L., & Shen, Y. (2014). Feature mining for machine learning based compilation optimization. In Proceedings of the eighth international conference on innovative mobile and internet services in ubiquitous computing, pp. 207–214.
5.
go back to reference Ballal, P. A., Sarojadevi, H., et al. (2015). Compiler optimization: A genetic algorithm approach. International Journal of Computer Applications., 112(10), 9–13. Ballal, P. A., Sarojadevi, H., et al. (2015). Compiler optimization: A genetic algorithm approach. International Journal of Computer Applications., 112(10), 9–13.
6.
go back to reference Schkufza, E., Sharma, R., & Aiken, A. (2014). Stochastic optimization of floating-point programs with tunable precision. In Proceedings of programming language design and implementation (PLDI), pp. 53–64. Schkufza, E., Sharma, R., & Aiken, A. (2014). Stochastic optimization of floating-point programs with tunable precision. In Proceedings of programming language design and implementation (PLDI), pp. 53–64.
7.
go back to reference Purini, S., & Jain, L. (2013). Finding good optimization sequences covering program space. ACM Transactions on Architecture and Code Optimization (TACO), 9(4), 56:1–56:23. Purini, S., & Jain, L. (2013). Finding good optimization sequences covering program space. ACM Transactions on Architecture and Code Optimization (TACO), 9(4), 56:1–56:23.
8.
go back to reference Wang, Z., & Boyle, M. F. P. O. (2013). Using machine learning to partition streaming programs. ACM Transactions on Architecture and Code Optimization (TACO), 10(3), 20:1–20:25. Wang, Z., & Boyle, M. F. P. O. (2013). Using machine learning to partition streaming programs. ACM Transactions on Architecture and Code Optimization (TACO), 10(3), 20:1–20:25.
9.
go back to reference Trouvé, A., Cruz, A., et al. (2013). Using machine learning in order to improve automatic SIMD instruction generation. In Proceedings of the international conference on computational science, pp. 1292–1301.CrossRef Trouvé, A., Cruz, A., et al. (2013). Using machine learning in order to improve automatic SIMD instruction generation. In Proceedings of the international conference on computational science, pp. 1292–1301.CrossRef
10.
go back to reference Kumar, T. S., Sakthivel, S., & Kumar, S. (2014). Optimizing code by selecting compiler flags using parallel genetic algorithm on multicore CPUs. International Journal of Engineering and Technology (IJET), 6(2), 544–555. Kumar, T. S., Sakthivel, S., & Kumar, S. (2014). Optimizing code by selecting compiler flags using parallel genetic algorithm on multicore CPUs. International Journal of Engineering and Technology (IJET), 6(2), 544–555.
11.
go back to reference Ogilvie, W. F., Petoumenos, P., Wang, Z., & Leather H. (2014). Fast automatic heuristic construction using active learning. In International workshop on languages and compilers for parallel computing (LCPC), pp. 146–160. Ogilvie, W. F., Petoumenos, P., Wang, Z., & Leather H. (2014). Fast automatic heuristic construction using active learning. In International workshop on languages and compilers for parallel computing (LCPC), pp. 146–160.
12.
go back to reference Balaprakash, P., Gramacy, R. B., & Wild, S. M. (2013). Active-learning based surrogate models for empirical performance tuning. In IEEE international conference on cluster computing, pp. 1–8. Balaprakash, P., Gramacy, R. B., & Wild, S. M. (2013). Active-learning based surrogate models for empirical performance tuning. In IEEE international conference on cluster computing, pp. 1–8.
13.
go back to reference Balaprakash, P., Rupp, K., Mametjanov, A., et al. (2013). Empirical performance modeling of GPU kernels using active learning. In International conference on parallel computing, pp 646–655. Balaprakash, P., Rupp, K., Mametjanov, A., et al. (2013). Empirical performance modeling of GPU kernels using active learning. In International conference on parallel computing, pp 646–655.
14.
go back to reference Mazouz, A., Touati, S. A. A., & Barthou, D. (2010). Study of variations of native program execution times on multi-core architectures. In Conference on complex, intelligent and software intensive systems (CISIS), pp. 919–924. Mazouz, A., Touati, S. A. A., & Barthou, D. (2010). Study of variations of native program execution times on multi-core architectures. In Conference on complex, intelligent and software intensive systems (CISIS), pp. 919–924.
16.
go back to reference Okada, T. K., Goldman, A., & Cavalheiro, G. G. H. (2016). Using NAS Parallel Benchmarks to evaluate HPC performance in clouds. In IEEE 15th international symposium on network computing and applications (NCA), pp. 27–30. Okada, T. K., Goldman, A., & Cavalheiro, G. G. H. (2016). Using NAS Parallel Benchmarks to evaluate HPC performance in clouds. In IEEE 15th international symposium on network computing and applications (NCA), pp. 27–30.
17.
go back to reference Sani, S., Wiratunga, N., Massie, S., & Cooper, K. (2017). kNN sampling for personalised human activity recognition. In International conference on case-based reasoning, pp. 330–344.CrossRef Sani, S., Wiratunga, N., Massie, S., & Cooper, K. (2017). kNN sampling for personalised human activity recognition. In International conference on case-based reasoning, pp. 330–344.CrossRef
18.
go back to reference Dionisios, N. S., Demitrios, E. P., & George, G. (2017). SVM-based sentiment classification: A comparative study against state-of-the-art classifiers. International Journal of Computational Intelligence Studies., 6(1), 52–67.CrossRef Dionisios, N. S., Demitrios, E. P., & George, G. (2017). SVM-based sentiment classification: A comparative study against state-of-the-art classifiers. International Journal of Computational Intelligence Studies., 6(1), 52–67.CrossRef
Metadata
Title
ALIC: A Low Overhead Compiler Optimization Prediction Model
Authors
Hui Liu
Rongcai Zhao
Qi Wang
Yingying Li
Publication date
09-02-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5479-x

Other articles of this Issue 1/2018

Wireless Personal Communications 1/2018 Go to the issue