Skip to main content
Top

2011 | OriginalPaper | Chapter

15. All-Cellulosic Based Composites

Authors : J. P. Borges, M. H. Godinho, J. L. Figueirinhas, M. N. de Pinho, M. N. Belgacem

Published in: Cellulose Fibers: Bio- and Nano-Polymer Composites

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of cellulosic fibers as load bearing constituents in composite materials has increased over the last decade due to their relative cheapness compared to conventional materials such as glass and aramid fibers, their ability to recycle, and because they compete well in terms of strength per weight of material. All-cellulosic based composites prepared from cellulose derivatives based matrices and microcrystalline cellulosic fibers made by direct coupling between fibers and matrix present interesting mechanical and gas permeation properties, thus being potential candidates for packaging materials. Both the cellulosic matrix and the reinforcing fibers are biocompatible and widely used in the pharmaceutical industry, which is very important for the envisaged application. In addition to their biocompatibility, cellulosic systems have the ability to form both thermotropic and lyotropic chiral nematic phases, and the composites produced from the latter show improved mechanical properties due to fiber orientation induced by the anisotropic matrix. The preparation and characterization (morphological, topographical, mechanical, gas barrier properties) of all-cellulosic based composites are described in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Manson JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York Manson JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York
2.
go back to reference Eichhorn SJ, Dufresne A et al (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A et al (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33CrossRef
3.
go back to reference Berglund LA, Peijs T (2010) Cellulose biocomposites-from bulk moldings to nanostuctured systems. MRS Bull 35:201–207CrossRef Berglund LA, Peijs T (2010) Cellulose biocomposites-from bulk moldings to nanostuctured systems. MRS Bull 35:201–207CrossRef
4.
go back to reference Ly B, Thielemans W et al (2008) Surface functionalization of cellulose fibers and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201CrossRef Ly B, Thielemans W et al (2008) Surface functionalization of cellulose fibers and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201CrossRef
5.
go back to reference Peijs T, Baillie C (eds) (2003) Eco-composites. Compos Sci Technol 63:1223–1336 Peijs T, Baillie C (eds) (2003) Eco-composites. Compos Sci Technol 63:1223–1336
6.
go back to reference Mohanty AK, Misra M et al (2000) Biofibers, biodegradable polymers and biocomposites. An overview. Macromol Mater Eng 276(277):1–24CrossRef Mohanty AK, Misra M et al (2000) Biofibers, biodegradable polymers and biocomposites. An overview. Macromol Mater Eng 276(277):1–24CrossRef
7.
go back to reference Gassan J, Bledzki AK (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274CrossRef Gassan J, Bledzki AK (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274CrossRef
8.
go back to reference Lu JZ, Wu Q et al (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32:88–108 Lu JZ, Wu Q et al (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32:88–108
9.
go back to reference Belgacem MN, Gandini A (2005) The surface modification of cellulose fibers for use as reinforcing elements in composite materials. Compos Interf 12:41–75CrossRef Belgacem MN, Gandini A (2005) The surface modification of cellulose fibers for use as reinforcing elements in composite materials. Compos Interf 12:41–75CrossRef
10.
go back to reference Borges JP, Godinho MH et al (2001) New bio-composites based on short fiber reinforced hydroxypropylcellulose films. Compos Interf 8:233–241CrossRef Borges JP, Godinho MH et al (2001) New bio-composites based on short fiber reinforced hydroxypropylcellulose films. Compos Interf 8:233–241CrossRef
11.
go back to reference Borges JP, Godinho MH et al (2001) Cellulose-based composite films. Mech Compos Mater 37:257–264CrossRef Borges JP, Godinho MH et al (2001) Cellulose-based composite films. Mech Compos Mater 37:257–264CrossRef
12.
go back to reference Borges JP, Godinho MH et al (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25:102–110CrossRef Borges JP, Godinho MH et al (2004) Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films. Polym Compos 25:102–110CrossRef
13.
14.
go back to reference Borges JP, Godinho MH (2008) Cellulose-based anisotropic composites. Mater Sci Forum 587–588:604–607CrossRef Borges JP, Godinho MH (2008) Cellulose-based anisotropic composites. Mater Sci Forum 587–588:604–607CrossRef
15.
go back to reference Aharoni SM, Walsh EK (1979) Rigid backbone polymers. 4. Solution properties of two lyotropic mesomorphic poly(isocyanates). Macromolecules 12:271–276CrossRef Aharoni SM, Walsh EK (1979) Rigid backbone polymers. 4. Solution properties of two lyotropic mesomorphic poly(isocyanates). Macromolecules 12:271–276CrossRef
16.
go back to reference Ernst B, Navard P (1989) Band textures in mesomorphic (hydroxypropyl) cellulose solutions. Macromolecules 22:1419–1422CrossRef Ernst B, Navard P (1989) Band textures in mesomorphic (hydroxypropyl) cellulose solutions. Macromolecules 22:1419–1422CrossRef
17.
go back to reference Viney C, Putnam W (1995) The banded microstructure of sheared liquid-crystalline polymers. Polymer 36:1731–1741CrossRef Viney C, Putnam W (1995) The banded microstructure of sheared liquid-crystalline polymers. Polymer 36:1731–1741CrossRef
18.
go back to reference Riti JB, Cidade MT et al (1997) Shear induced textures of thermotropic acetoxypropylcellulose. J Rheol 41:1247–1259CrossRef Riti JB, Cidade MT et al (1997) Shear induced textures of thermotropic acetoxypropylcellulose. J Rheol 41:1247–1259CrossRef
19.
go back to reference Godinho MH, Fonseca JG et al (2002) Atomic force microscopy study of hydroxypropylcellulose films prepared from liquid crystalline aqueous solutions. Macromolecules 35:5932–5936CrossRef Godinho MH, Fonseca JG et al (2002) Atomic force microscopy study of hydroxypropylcellulose films prepared from liquid crystalline aqueous solutions. Macromolecules 35:5932–5936CrossRef
20.
go back to reference Schätzle J, Finkelmann H (1987) State of order in liquid crystalline elastomers. Mol Cryst Liq Cryst 142:85–100CrossRef Schätzle J, Finkelmann H (1987) State of order in liquid crystalline elastomers. Mol Cryst Liq Cryst 142:85–100CrossRef
21.
go back to reference Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79CrossRef Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79CrossRef
22.
go back to reference Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627CrossRef Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627CrossRef
23.
go back to reference Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Dekker, New York Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Dekker, New York
24.
go back to reference Piggott MR, Ko M et al (1993) Aligned short-fiber reinforced thermosets: experiments and analysis lend little support for established theory. Compos Sci Technol 48:291–299CrossRef Piggott MR, Ko M et al (1993) Aligned short-fiber reinforced thermosets: experiments and analysis lend little support for established theory. Compos Sci Technol 48:291–299CrossRef
25.
go back to reference Hull D (1981) An introduction to composite materials. Cambridge University Press, London Hull D (1981) An introduction to composite materials. Cambridge University Press, London
26.
go back to reference Krenchel H (1964) Fiber reinforcement. Akademisk Forlag, Copenhagen Krenchel H (1964) Fiber reinforcement. Akademisk Forlag, Copenhagen
27.
go back to reference De SK, White JR (eds) (1996) Short fiber-polymer composites. Woodhead, Cambridge, England De SK, White JR (eds) (1996) Short fiber-polymer composites. Woodhead, Cambridge, England
28.
go back to reference Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352CrossRef Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352CrossRef
29.
go back to reference Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207CrossRef Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207CrossRef
30.
go back to reference Turcsányi B, Pukánszky B et al (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162CrossRef Turcsányi B, Pukánszky B et al (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162CrossRef
31.
go back to reference Pukánszky B (1990) Influence of the interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262CrossRef Pukánszky B (1990) Influence of the interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262CrossRef
32.
go back to reference Queiroz DP, de Pinho MN (2005) Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes. Polymer 46:2346–2353CrossRef Queiroz DP, de Pinho MN (2005) Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes. Polymer 46:2346–2353CrossRef
33.
go back to reference Mulder M (1996) Basic principles of membrane technology. Kluwer, London Mulder M (1996) Basic principles of membrane technology. Kluwer, London
34.
go back to reference Delassus P (1997) Barrier properties. In: Brody A, Marsh K (eds) The Wiley encyclopedia of packaging technology, 2nd edn. New York, Wiley Delassus P (1997) Barrier properties. In: Brody A, Marsh K (eds) The Wiley encyclopedia of packaging technology, 2nd edn. New York, Wiley
35.
go back to reference Favier V, Canova GR et al (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef Favier V, Canova GR et al (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef
36.
go back to reference Favier V, Chanzy H et al (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H et al (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
37.
go back to reference Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716CrossRef Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716CrossRef
38.
go back to reference Soykeabkaew N, Arimoto N et al (2008) All-cellulose composites by selective dissolution of aligned lingo-cellulosic fibers. Compos Sci Technol 68:2201–2207CrossRef Soykeabkaew N, Arimoto N et al (2008) All-cellulose composites by selective dissolution of aligned lingo-cellulosic fibers. Compos Sci Technol 68:2201–2207CrossRef
39.
go back to reference Soykeabkaew N, Sian N et al (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRef Soykeabkaew N, Sian N et al (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRef
40.
go back to reference Qin C, Soykeabkaew N et al (2008) The effect of fiber volume fraction on the properties of all-cellulose composites. Carbohydr Polym 71:458–467CrossRef Qin C, Soykeabkaew N et al (2008) The effect of fiber volume fraction on the properties of all-cellulose composites. Carbohydr Polym 71:458–467CrossRef
41.
go back to reference Alcock B, Cabrera NO et al (2006) Low velocity impact performance of recyclable all-polypropylene composites. Compos Sci Technol 66:1724–1737CrossRef Alcock B, Cabrera NO et al (2006) Low velocity impact performance of recyclable all-polypropylene composites. Compos Sci Technol 66:1724–1737CrossRef
42.
go back to reference Alcock B, Cabrera NO et al (2007) The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos Sci Technol 67:2061–2070CrossRef Alcock B, Cabrera NO et al (2007) The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos Sci Technol 67:2061–2070CrossRef
43.
go back to reference Revol JF, Bradford H et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRef Revol JF, Bradford H et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRef
44.
45.
go back to reference Orts WJ, Godbout L et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725CrossRef Orts WJ, Godbout L et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725CrossRef
Metadata
Title
All-Cellulosic Based Composites
Authors
J. P. Borges
M. H. Godinho
J. L. Figueirinhas
M. N. de Pinho
M. N. Belgacem
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-17370-7_15

Premium Partners