Skip to main content
Top
Published in: Computational Mechanics 2/2017

24-10-2016 | Original Paper

Alternative integration algorithms for three-dimensional mortar contact

Authors: C. Wilking, M. Bischoff

Published in: Computational Mechanics | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new approach is proposed to improve efficiency of the integration procedure for mortar integrals within finite element mortar methods for contact. Appropriate approaches subdivide polygonal integration segments into triangular integration cells where well-established quadrature rules can be applied for numerical integration. Here, a subdivision of segments into quadrilateral integration cells is proposed and investigated in detail. By this procedure, the numerical effort is decreased because the number of integration cells is smaller and less quadrature points are needed. In all the aforementioned methods, necessary projections of integration points result in rational polynomials in the integrand. Thus, an exact numerical integration is impossible. Using quadrilateral integration cells additionally involves non-constant Jacobian determinants which further increases the polynomial degree of the integrand. Numerical experiments indicate, that the resulting increase in the error is small enough to be acceptable in consideration of the gained speed-up.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ben Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271MathSciNetCrossRefMATH Ben Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271MathSciNetCrossRefMATH
2.
go back to reference Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, ChichesterMATH Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, ChichesterMATH
3.
go back to reference Bernardi C, Mayday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis H, Lions JL (eds) Nonlinear partial differential equations and their applications. no. XI in Collège de Frace Seminar, Longman, Harlow, pp 13–51 Bernardi C, Mayday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis H, Lions JL (eds) Nonlinear partial differential equations and their applications. no. XI in Collège de Frace Seminar, Longman, Harlow, pp 13–51
4.
go back to reference Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Comput Methods Appl Mech Eng 200(9–12):1317–1332MathSciNetCrossRefMATH Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Comput Methods Appl Mech Eng 200(9–12):1317–1332MathSciNetCrossRefMATH
5.
go back to reference Dunavant DA (1985) Economical symmetrical quadrature rules for complete polynomials over a square domain. Int J Numer Methods Eng 21(10):1777–1784MathSciNetCrossRefMATH Dunavant DA (1985) Economical symmetrical quadrature rules for complete polynomials over a square domain. Int J Numer Methods Eng 21(10):1777–1784MathSciNetCrossRefMATH
6.
go back to reference El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16):1473–1486CrossRef El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16):1473–1486CrossRef
7.
go back to reference Farah P, Popp A, Wall WA (2014) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55(1):209–228MathSciNetCrossRefMATH Farah P, Popp A, Wall WA (2014) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55(1):209–228MathSciNetCrossRefMATH
8.
go back to reference Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244CrossRefMATH Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244CrossRefMATH
9.
go back to reference Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036MathSciNetCrossRefMATH Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036MathSciNetCrossRefMATH
10.
go back to reference Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9(4):913–924CrossRef Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9(4):913–924CrossRef
11.
go back to reference Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetMATH Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetMATH
12.
go back to reference Gitterle M (2012) A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. Dissertation, Technische Universität München Gitterle M (2012) A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. Dissertation, Technische Universität München
13.
go back to reference Hartmann S, Brunssen S, Ramm E, Wohlmuth B (2007) Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. Int J Numer Methods Eng 70(8):883–912MathSciNetCrossRefMATH Hartmann S, Brunssen S, Ramm E, Wohlmuth B (2007) Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. Int J Numer Methods Eng 70(8):883–912MathSciNetCrossRefMATH
14.
go back to reference Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth newton method. SIAM J Optimiz 13(3):865–888MathSciNetCrossRefMATH Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth newton method. SIAM J Optimiz 13(3):865–888MathSciNetCrossRefMATH
15.
go back to reference Hüeber S, Stadler G, Wohlmuth B (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572–596MathSciNetCrossRefMATH Hüeber S, Stadler G, Wohlmuth B (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572–596MathSciNetCrossRefMATH
16.
go back to reference Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276CrossRefMATH Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276CrossRefMATH
17.
go back to reference Kikuchi N, Oden J (1988) Contact problems in elasticity. Society for industrial and applied mathematics, Studies in applied and numerical mathematics Kikuchi N, Oden J (1988) Contact problems in elasticity. Society for industrial and applied mathematics, Studies in applied and numerical mathematics
18.
go back to reference Laursen TA (2003) Computational contact and impact mechanics. Springer, BerlinCrossRef Laursen TA (2003) Computational contact and impact mechanics. Springer, BerlinCrossRef
19.
go back to reference McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547MathSciNetCrossRefMATH McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547MathSciNetCrossRefMATH
20.
go back to reference Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82(1):99–113MathSciNetMATH Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82(1):99–113MathSciNetMATH
21.
go back to reference Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94(3):373–389CrossRefMATH Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94(3):373–389CrossRefMATH
22.
go back to reference Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391MathSciNetCrossRefMATH Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391MathSciNetCrossRefMATH
23.
go back to reference Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465MathSciNetCrossRefMATH Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465MathSciNetCrossRefMATH
24.
go back to reference Popp A (2012) Mortar methods for computational contact mechanics and general interface problems. Dissertation, Technische Universität München Popp A (2012) Mortar methods for computational contact mechanics and general interface problems. Dissertation, Technische Universität München
25.
go back to reference Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80MathSciNetCrossRefMATH Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80MathSciNetCrossRefMATH
26.
go back to reference Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305–319CrossRefMATH Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305–319CrossRefMATH
27.
go back to reference Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629CrossRefMATH Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629CrossRefMATH
28.
go back to reference Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47):4891–4913MathSciNetCrossRefMATH Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47):4891–4913MathSciNetCrossRefMATH
29.
go back to reference Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197(6–8):555–566MathSciNetCrossRefMATH Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197(6–8):555–566MathSciNetCrossRefMATH
30.
go back to reference Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180MathSciNetCrossRefMATH Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180MathSciNetCrossRefMATH
31.
go back to reference Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012MathSciNetCrossRefMATH Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012MathSciNetCrossRefMATH
32.
go back to reference Wohlmuth BI, Krause RH (2003) Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J Sci Comput 25(1):324MathSciNetCrossRefMATH Wohlmuth BI, Krause RH (2003) Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J Sci Comput 25(1):324MathSciNetCrossRefMATH
34.
go back to reference Xiao H, Gimbutas Z (2010) A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput Math Appl 59(2):663–676MathSciNetCrossRefMATH Xiao H, Gimbutas Z (2010) A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput Math Appl 59(2):663–676MathSciNetCrossRefMATH
35.
go back to reference Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225MathSciNetCrossRefMATH Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225MathSciNetCrossRefMATH
36.
go back to reference Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4–8):497–515CrossRefMATH Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4–8):497–515CrossRefMATH
Metadata
Title
Alternative integration algorithms for three-dimensional mortar contact
Authors
C. Wilking
M. Bischoff
Publication date
24-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2017
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1345-4

Other articles of this Issue 2/2017

Computational Mechanics 2/2017 Go to the issue