Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

An accurate approximation formula for gamma function

Authors: Zhen-Hang Yang, Jing-Feng Tian

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this paper, we present a very accurate approximation for the gamma function:
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$
as \(x\rightarrow\infty\), and we prove that the function \(x\mapsto\ln \Gamma ( x+1 ) -\ln W_{2} ( x ) \) is strictly decreasing and convex from \(( 1,\infty ) \) onto \(( 0,\beta ) \), where
$$ \beta=\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx0.00002407. $$
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The Stirling formula states that
$$ n!\thicksim\sqrt{2\pi n}n^{n}e^{-n} $$
(1.1)
for \(n\in\mathbb{N}\). The gamma function \(\Gamma ( x ) =\int_{0}^{\infty}t^{x-1}e^{-t}\,dt\) for \(x>0\) is a generalization of the factorial function n! and has important applications in various branches of mathematics; see, for example, [16] and the references cited therein.
There are many refinements for the Stirling formula; see, for example, Burnside’s [7], Gosper [8], Batir [9], Mortici [10]. Many authors pay attention to find various better approximations for the gamma function, for instance, Ramanujan [11, P. 339], Smith [12, Eq. (42)], [13], Mortici [14], Nemes [15, Corollary 4.1], Yang and Chu [16, Propositions 4 and 5], Chen [17].
More results involving the approximation formulas for the factorial or gamma function can be found in [16, 1827] and the references cited therein. Several nice inequalities between gamma function and the truncations of its asymptotic series can be found in [28, 29].
Now let us focus on the Windschitl approximation formula (see [12, Eq. (42)], [13]) defined by
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}:=W_{0} ( x )\quad \text{as }x\rightarrow\infty. $$
(1.2)
As shown in [17], the rate of Windschitl’s approximation \(W_{0} ( x ) \) converging to \(\Gamma ( x+1 ) \) is like \(x^{-5}\) as \(x\rightarrow\infty\), and it is faster on replacing \(W_{0} ( x ) \) by
$$ W_{1} ( x ) =\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x}+\frac{1}{810x^{6}} \biggr) ^{x/2} $$
(1.3)
(see [13]). These results show that \(W_{0} ( x ) \) and \(W_{1} ( x ) \) are excellent approximations for the gamma function.
In 2009, Alzer [30] proved that, for all \(x>0\),
$$\begin{aligned} &\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh \frac{1}{x} \biggr) ^{x/2} \biggl( 1+\frac{\alpha}{x^{5}} \biggr) \\ &\quad< \Gamma( x+1 ) =\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2} \biggl( 1+ \frac{\beta}{x^{5}} \biggr) \end{aligned}$$
(1.4)
with the best possible constants \(\alpha=0\) and \(\beta=1/1620\). Lu, Song and Ma [31] extended Windschitl’s formula to
$$ \Gamma( n+1 ) \thicksim\sqrt{2\pi n} \biggl( \frac{n}{e} \biggr) ^{n} \biggl[ n\sinh\biggl( \frac{1}{n}+\frac{a_{7}}{n^{7}}+ \frac{a_{9}}{n^{9}}+\frac{a_{11}}{n^{11}}+\cdots\biggr) \biggr] ^{n/2} $$
with \(a_{7}=1/810,a_{9}=-67/42{,}525,a_{11}=19/8505,\ldots \) . An explicit formula for determining the coefficients of \(n^{-k}\) (\(n\in\mathbb{N}\)) was given in [32, Theorem 1] by Chen. Another asymptotic expansion
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2+\sum_{j=0}^{\infty }r_{j}x^{-j}}, \quad x\rightarrow\infty $$
(1.5)
was presented in the same reference [32, Theorem 2].
Motivated by the above comments, the aim of this paper is to provide a more accurate Windschitl type approximation:
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$
(1.6)
as \(x\rightarrow\infty\). Our main result is the following theorem.
Theorem 1
The function
$$ f_{0} ( x ) =\ln\Gamma( x+1 ) -\ln\sqrt{2\pi}- \biggl( x+ \frac{1}{2} \biggr) \ln x+x-\frac{x}{2}\ln\biggl( x\sinh \frac{1}{x} \biggr) -\frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } $$
is strictly decreasing and convex from \(( 1,\infty ) \) onto \(( 0,f_{0} ( 1 ) ) \), where
$$ f_{0} ( 1 ) =\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx 0.00002407. $$

2 Lemmas

An important research subject in analyzing inequality is to convert an univariate into the monotonicity of functions [3335]. Since the function \(f_{0} ( x ) \) contains gamma and hyperbolic functions, it is very hard to deal with its monotonicity and convexity by usual approaches. For this purpose, we need the following lemmas, which provide a new way to prove our result.
Lemma 1
The inequality
$$ \psi^{\prime} \biggl( x+\frac{1}{2} \biggr) >x\frac{x^{4}+\frac {227}{66}x^{2}+\frac{4237}{2640}}{x^{6}+\frac{155}{44}x^{4}+\frac{329}{176}x^{2}+\frac {375}{4928}} $$
holds for \(x>0\).
Proof
Let
$$ g_{1} ( x ) =\psi^{\prime} \biggl( x+\frac{1}{2} \biggr) -x\frac{x^{4}+\frac{227}{66}x^{2}+\frac{4237}{2640}}{x^{6}+\frac {155}{44}x^{4}+\frac{329}{176}x^{2}+\frac{375}{4928}}. $$
Then by the recurrence formula [36, p. 260, (6.4.6)]
$$ \psi^{\prime} ( x+1 ) -\psi^{\prime} ( x ) =-\frac{1}{x^{2}} $$
we have
$$\begin{aligned} &g_{1} ( x+1 ) -g_{1} ( x ) \\ &\quad=\psi^{\prime} \biggl( x+\frac{3}{2} \biggr) -\frac{ ( x+1 ) ( ( x+1 ) ^{4}+\frac{227}{66} ( x+1 ) ^{2}+\frac{4237}{2640} ) }{ ( x+1 ) ^{6}+\frac{155}{44} ( x+1 ) ^{4}+\frac{329}{176} ( x+1 ) ^{2}+\frac{375}{4928}} \\ &\qquad{}-\psi^{\prime} \biggl( x+\frac{1}{2} \biggr) +\frac{x ( x^{4}+\frac {227}{66}x^{2}+\frac{4237}{2640} ) }{x^{6}+\frac{155}{44}x^{4}+\frac{329}{176}x^{2}+\frac{375}{4928}} \\ &\quad =-58{,}982{,}400 ( 2x+1 ) ^{-2} \bigl( 4928x^{6}+17{,}360x^{4}+9212x^{2}+375 \bigr) ^{-1} \\ &\qquad{}\times \bigl( 4928x^{6}+29{,}568x^{5}+91{,}280x^{4}+168{,}000x^{3}+187{,}292x^{2}\\ &\qquad{}+117{,}432x+31 {,}875 \bigr) ^{-1}\\ &\quad< 0. \end{aligned}$$
It then follows that
$$ g_{1} ( x ) >g_{1} ( x+1 ) >\cdots>\lim_{n\rightarrow\infty }g_{1} ( x+n ) =0, $$
which proves the desired inequality, and the proof is done. □
Lemma 2
The inequalities
$$ \frac{t}{\sinh t}>1-\frac{1}{6}t^{2}+\frac{7}{360}t^{4}- \frac{31}{15{,}120}t^{6}+\frac{127}{604{,}800}t^{8}- \frac{73}{3{,}421{,}440}t^{10}>0 $$
(2.1)
hold for \(t\in(0,1]\).
Proof
It was proved in [29, Theorem 1] that, for integer \(n\geq0\), the double inequality
$$ -\sum_{i=0}^{2n+1}\frac{2 ( 2^{2i-1}-1 ) B_{2i}}{ ( 2i ) !}t^{2i-1}< \frac{1}{\sinh t}< -\sum_{i=0}^{2n} \frac{2 ( 2^{2i-1}-1 ) B_{2i}}{ ( 2i ) !}t^{2i-1} $$
(2.2)
holds for \(x>0\). Taking \(n=2\) yields
$$ \frac{1}{\sinh t}>\frac{1}{t}-\frac{1}{6}t+\frac{7}{360}t^{3}- \frac{31}{15{,}120}t^{5}+\frac{127}{604{,}800}t^{7}- \frac{73}{3{,}421{,}440}t^{9}:=\frac{h ( t ) }{t}, $$
which is equivalent to the first inequality of (2.1) for all \(t>0\).
Since \(x\in(0,1]\), making a change of variable \(t^{2}=1-x\in(0,1]\) we obtain
$$\begin{aligned} h ( t ) ={}&\frac{73}{3{,}421{,}440}x^{5}+\frac{12{,}371}{119{,}750{,}400}x^{4}+ \frac{85{,}243}{59{,}875{,}200}x^{3} \\ &{}+\frac{858{,}623}{59{,}875{,}200}x^{2}+\frac {15{,}950{,}191}{119{,}750{,}400}x+\frac{14{,}556{,}793}{17{,}107{,}200}>0, \end{aligned}$$
which proves the second one, and the proof is complete. □
The following lemma offers a simple criterion to determine the sign of a class of special polynomial on given interval contained in \(( 0,\infty ) \) without using Descartes’ rule of signs, which play an important role in studying certain special functions; see for example [37, 38]. A series version can be found in [39].
Lemma 3
([37, Lemma 7])
Let \(n\in\mathbb{N}\) and \(m\in\mathbb{N}\cup\{0\}\) with \(n>m\) and let \(P_{n} ( t ) \) be a polynomial of degree n defined by
$$ P_{n} ( t ) =\sum_{i=m+1}^{n}a_{i}t^{i}- \sum_{i=0}^{m}a_{i}t^{i}, $$
(2.3)
where \(a_{n},a_{m}>0\), \(a_{i}\geq0\) for \(0\leq i\leq n-1\) with \(i\neq m\). Then there is a unique number \(t_{m+1}\in ( 0,\infty ) \) satisfying \(P_{n} ( t ) =0\) such that \(P_{n} ( t ) <0\) for \(t\in ( 0,t_{m+1} ) \) and \(P_{n} ( t ) >0\) for \(t\in ( t_{m+1},\infty ) \).
Consequently, for given \(t_{0}>0\), if \(P_{n} ( t_{0} ) >0\) then \(P_{n} ( t ) >0\) for \(t\in ( t_{0},\infty ) \) and if \(P_{n} ( t_{0} ) <0\) then \(P_{n} ( t ) <0\) for \(t\in ( 0,t_{0} ) \).

3 Proof of Theorem 1

With the aid of the lemmas in Sect. 2, we can prove Theorem 1.
Proof of Theorem 1
Differentiation yields
$$\begin{aligned} &f_{0}^{\prime} ( x ) =\psi( x+1 ) -\frac{1}{2}\ln \biggl( x\sinh\frac{1}{x} \biggr) +\frac{1}{2x}\coth \frac{1}{x} \\ &\phantom{f_{0}^{\prime} ( x )=}{}-\ln x-\frac{1}{2x}-\frac{1}{2}+\frac{7}{324} \frac{175x^{2}+99}{x^{4} ( 35x^{2}+33 ) ^{2}}, \\ &f_{0}^{\prime\prime} ( x ) =\psi^{\prime} ( x+1 ) +\frac{1}{2x^{3}}\frac{1}{\sinh^{2} ( 1/x ) } \\ &\phantom{f_{0}^{\prime\prime} ( x ) =}{}-\frac{3}{2x}+\frac{1}{2x^{2}}-\frac{7}{54}\frac {6125x^{4}+6545x^{2}+2178}{x^{5} ( 35x^{2}+33 ) ^{3}}. \end{aligned}$$
Since \(\lim_{x\rightarrow\infty}f_{0} ( x ) =\lim_{x\rightarrow \infty}f_{0}^{\prime} ( x ) =0\), it suffices to prove \(f_{0}^{\prime\prime} ( x ) >0\) for \(x\geq1\). Replacing x by \(( x+1/2 ) \) in Lemma 1 leads to
$$ \psi^{\prime} ( x+1 ) >\frac{7}{30}\frac{ ( 2x+1 ) ( 165x^{4}+330x^{3}+815x^{2}+650x+417 ) }{77x^{6}+231x^{5}+560x^{4}+735x^{3}+623x^{2}+294x+60}, $$
which indicates that
$$\begin{aligned} f_{0}^{\prime\prime} ( x ) >{}&\frac{7}{30}\frac{ ( 2x+1 ) ( 165x^{4}+330x^{3}+815x^{2}+650x+417 ) }{77x^{6}+231x^{5}+560x^{4}+735x^{3}+623x^{2}+294x+60}+ \frac{1}{2x^{3}}\frac{1}{\sinh^{2} ( 1/x ) } \\ &{}-\frac{3}{2x}+\frac{1}{2x^{2}}-\frac{7}{54}\frac {6125x^{4}+6545x^{2}+2178}{x^{5} ( 35x^{2}+33 ) ^{3}}:=f_{01} \biggl( \frac{1}{x} \biggr). \end{aligned}$$
Arranging gives
$$\begin{aligned} f_{01} ( t ) ={}&\frac{t}{2} \biggl( \frac{t}{\sinh t} \biggr) ^{2}+\frac{7}{30}\frac{t ( t+2 ) ( 417t^{4}+650t^{3}+815t^{2}+330t+165 ) }{60t^{6}+294t^{5}+623t^{4}+735t^{3}+560t^{2}+231t+77} \\ &{}-\frac{3}{2}t+\frac{1}{2}t^{2}-\frac{7}{54}t^{7} \frac{2178t^{4}+6545t^{2}+6125}{ ( 33t^{2}+35 ) ^{3}}, \end{aligned}$$
where \(t=1/x\in ( 0,1 ) \). Applying the first inequality of (2.1) we have
$$\begin{aligned} f_{01} ( t ) >{}&\frac{t}{2} \biggl( 1-\frac{1}{6}t^{2}+ \frac{7}{360}t^{4}-\frac{31}{15{,}120}t^{6}+ \frac{127}{604{,}800}t^{8}-\frac{73}{3{,}421{,}440}t^{10} \biggr) ^{2} \\ &{}+\frac{7}{30}\frac{t ( t+2 ) ( 417t^{4}+650t^{3}+815t^{2}+330t+165 ) }{60t^{6}+294t^{5}+623t^{4}+735t^{3}+560t^{2}+231t+77} \\ &{}-\frac{3}{2}t+\frac{1}{2}t^{2}-\frac{7}{54}t^{7} \frac{2178t^{4}+6545t^{2}+6125}{ ( 33t^{2}+35 ) ^{3}} \\ ={}&\frac{t^{11}\times p_{22} ( t ) }{ ( 33t^{2}+35 ) ^{3} ( 60t^{6}+294t^{5}+623t^{4}+735t^{3}+560t^{2}+231t+77 ) }, \end{aligned}$$
where \(p_{22} ( t ) =\sum_{k=0}^{22}a_{k}t^{k}\) with \(a_{0}=\frac{2{,}341{,}955}{27}\), \(a_{1}=\frac{2{,}341{,}955}{9}\), \(a_{2}= \frac{4{,}592{,}761{,}525{,}177}{41{,}057{,}280}\), \(a_{3}= \frac {3{,}740{,}791{,}861{,}177}{13{,}685{,}760}\), \(a_{4}= -\frac{21{,}774{,}907{,}040{,}747}{615{,}859{,}200}\), \(a_{5}=\frac {1{,}776{,}198{,}096{,}757}{51{,}321{,}600}\), \(a_{6}=-\frac{2{,}348{,}474{,}362{,}865{,}491}{59{,}122{,}483{,}200} \), \(a_{7}=-\frac{444{,}392{,}576{,}792{,}851}{19{,}707{,}494{,}400}\), \(a_{8}= \frac {722{,}576{,}509{,}559{,}549}{344{,}881{,}152{,}000} \), \(a_{9}=\frac {734{,}284{,}235{,}570{,}623}{229{,}920{,}768{,}000}\), \(a_{10}=-\frac {27{,}685{,}269{,}148{,}007{,}477}{74{,}494{,}328{,}832{,}000}\), \(a_{11}=-\frac {13{,}202{,}571{,}814{,}150{,}457}{24{,}831{,}442{,}944{,}000}\), \(a_{12}=\frac{1{,}859{,}898{,}503{,}651{,}431}{585{,}312{,}583{,}680{,}000}\), \(a_{13}=\frac{40{,}990{,}762{,}057{,}313{,}921}{682{,}864{,}680{,}960{,}000}\), \(a_{14}=\frac{1{,}227{,}464{,}630{,}525{,}327}{573{,}606{,}332{,}006{,}400}\), \(a_{15}=-\frac{107{,}829{,}513{,}340{,}517}{19{,}510{,}419{,}456{,}000}\), \(a_{16}=-\frac{1{,}469{,}516{,}232{,}022{,}339}{4{,}780{,}052{,}766{,}720{,}000}\), \(a_{17}=\frac{224{,}320{,}158{,}179}{492{,}687{,}360{,}000}\), \(a_{18}=\frac{214{,}165{,}238{,}137}{6{,}437{,}781{,}504{,}000}\), \(a_{19}=-\frac{402{,}182{,}039}{11{,}943{,}936{,}000}\), \(a_{20}=-\frac{150{,}639{,}953}{50{,}164{,}531{,}200}\), \(a_{21}= \frac{2{,}872{,}331}{1{,}194{,}393{,}600}\), \(a_{22}=\frac{58{,}619}{119{,}439{,}360}\).
It remains to prove \(p_{22} ( t ) =\sum_{k=0}^{22}a_{k}t^{k}>0\) for \(t\in(0,1]\). Since \(a_{k}>0\) for \(k=0\), 1, 2, 3, 8, 9, 12, 13, 14, 17, 18, 21, 22 and \(a_{k}<0\) for \(k=4\), 6, 7, 10, 11, 15, 16, 19, 20, we have
$$ p_{22} ( t ) =\sum_{k=0}^{22}a_{k}t^{k}= \sum_{a_{k}>0}a_{k}t^{k}+\sum_{a_{k}< 0}a_{k}t^{k}>\sum _{k=4,6,7,10,11,15,16,19,20}a_{k}t^{k}+\sum _{k=0}^{3}a_{k}t^{k}:=p_{20} ( t ). $$
Clearly, the coefficients of the polynomial \(-p_{20} ( t ) \) satisfy the conditions in Lemma 3, and
$$ -p_{20} ( 1 ) =\sum_{k=4,6,7,10,11,15,16,19,20} ( -a_{k} ) -\sum_{k=0}^{3}a_{k}=- \frac{1{,}135{,}768{,}202{,}621{,}781{,}774{,}901}{1{,}792{,}519{,}787{,}520{,}000}< 0. $$
It then follows that \(p_{20} ( t ) >0\) for \(t\in(0,1]\), and so is \(p_{22} ( t ) \), which implies \(f_{01} ( t ) >0\) for \(t\in (0,1]\). Consequently, \(f_{0}^{\prime\prime} ( x ) >0\) for all \(x\geq1\). This completes the proof. □
As a direct consequence of Theorem 1, we immediately get the following.
Corollary 1
For \(n\in\mathbb{N}\), the double inequality
$$ \exp\frac{7}{324n^{3} ( 35n^{2}+33 ) }< \frac{n!}{\sqrt{2\pi n}( n/e ) ^{n} ( n\sinh n^{-1} ) ^{n/2}}< \lambda\exp\frac{7}{324n^{3} ( 35n^{2}+33 ) } $$
holds with the best constant
$$ \lambda=\exp f_{0} ( 1 ) =\frac{1}{\sqrt{2\pi\sinh1}}\exp\frac{22{,}025}{22{,}032} \approx1.000024067. $$
Set
$$ D_{0} ( y ) =y-\ln( 1+y ),\quad y=\frac{7}{324x^{3} ( 35x^{2}+33 ) }. $$
Then it is easy to check that, for \(x>1\),
$$\begin{aligned} &\frac{dD_{0} ( y ) }{dx}=-\frac{49}{324}\frac{175x^{2}+99}{x^{4} ( 35x^{2}+33 ) ^{2} ( 11{,}340x^{5}+10{,}692x^{3}+7 ) }< 0, \\ &\frac{d^{2}D_{0} ( y ) }{dx^{2}}=\frac{343}{54}\frac{ ( 18{,}191{,}250x^{9}+37{,}110{,}150x^{7}+24{,}992{,}550x^{5}+6125x^{4}+5{,}821 {,}794x^{3}+6545x^{2}+2178 ) }{x^{5} ( 35x^{2}+33 ) ^{3} ( 11{,}340x^{5}+10{,}692x^{3}+7 ) ^{2}}\\ &\phantom{\frac{d^{2}D_{0} ( y ) }{dx^{2}}}>0. \end{aligned}$$
That is to say, \(x\mapsto D_{0} ( y ) \) is decreasing and convex on \(( 1,\infty ) \), and so is the function \(f_{0}^{\ast} ( x ):=f_{0} ( x ) +D_{0} ( y ) \) by Theorem 1.
Corollary 2
The function
$$\begin{aligned} f_{0}^{\ast} ( x ) ={}&\ln\Gamma( x+1 ) -\ln\sqrt{2\pi }- \biggl( x+\frac{1}{2} \biggr) \ln x+x-\frac{x}{2}\ln \biggl( x\sinh\frac{1}{x}\biggr) \\ &{}-\ln\biggl( 1+ \frac{7}{324x^{3} ( 35x^{2}+33 ) } \biggr) \end{aligned}$$
is strictly decreasing and convex from \(( 1,\infty ) \) onto \(( 0,f_{0}^{\ast} ( 1 ) ) \), where
$$ f_{0}^{\ast} ( 1 ) =1-\ln\frac{22{,}039}{22{,}032}-\ln\sqrt{2\pi \sinh1}\approx0.00002412. $$
Remark 1
Corollary 2 offers another approximation formula
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2} \biggl( 1+ \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2}^{\ast} ( x ) . $$
(3.1)
Also, for \(n\in\mathbb{N}\),
$$\begin{aligned} 1+\frac{7}{324n^{3} ( 35n^{2}+33 ) }< \frac{n!}{\sqrt{2\pi n} ( n/e ) ^{n} ( n\sinh n^{-1} ) ^{n/2}}< \lambda^{\ast} \biggl( 1+\frac{7}{324n^{3} ( 35n^{2}+33 ) } \biggr) \end{aligned}$$
with the best constant
$$ \lambda^{\ast}=\exp f_{0}^{\ast} ( 1 ) = \frac{22{,}032}{22{,}039}\frac{e}{\sqrt{2\pi\sinh1}}\approx1.000024117. $$

4 Numerical comparisons

It is well known that an excellent approximation for the gamma function is fairly accurate but relatively simple. In this section, we list some known approximation formulas for the gamma function and compare them with \(W_{1} ( x ) \) given by (1.3) and our new one \(W_{2} ( x ) \) defined by (1.6).
It has been shown in [17] that, as \(x\rightarrow \infty\), Ramanujan’s [11, P. 339] approximation formula holds,
$$ \Gamma( x+1 ) \thicksim\sqrt{\pi} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 8x^{3}+4x^{2}+x+\frac{1}{30} \biggr) ^{1/6} \biggl( 1+O \biggl( \frac{1}{x^{4}} \biggr) \biggr) :=R ( x ), $$
and Smith’s one [12, Eq. (42)],
$$ \Gamma\biggl( x+\frac{1}{2} \biggr) \thicksim\sqrt{2\pi} \biggl( \frac{x}{e}\biggr) ^{x} \biggl( 2x\tanh \frac{1}{2x} \biggr) ^{x/2} \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr):=S ( x ), $$
Nemes’ one [15, Corollary 4.1],
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 1+\frac{1}{12x^{2}-1/10} \biggr) ^{x} \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr) =:N_{1} ( x ), $$
and Chen’s one [17],
$$\begin{aligned} \Gamma(x+1)&\thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 1+\frac{1}{12x^{3}+24x/7-1/2} \biggr) ^{x^{2}+53/210} \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr) \\ &:=C ( x ). \end{aligned}$$
(4.1)
Moreover, it is easy to check that Nemes’ result [13] is another one,
$$\begin{aligned} \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x}\exp\biggl( \frac{210x^{2}+53}{360x ( 7x^{2}+2 ) } \biggr) \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr):=N_{2} ( x ), \end{aligned}$$
(4.2)
and so are Yang and Chu’s [16, Propositions 4 and 5] ones,
$$\begin{aligned} &\Gamma\biggl( x+\frac{1}{2} \biggr) =\sqrt{2\pi} \biggl( \frac{x}{e}\biggr) ^{x}\exp\biggl( - \frac{1}{24}\frac{x}{x^{2}+7/120} \biggr) \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr):=Y_{1} ( x ), \\ &\Gamma\biggl( x+\frac{1}{2} \biggr) =\sqrt{2\pi} \biggl( \frac{x}{e}\biggr) ^{x}\exp\biggl( - \frac{1}{24x}+\frac{7}{2880x}\frac{1}{x^{2}+31/98}\biggr) \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr):=Y_{2} ( x ), \end{aligned}$$
and we have Windschitl one [13],
$$\begin{aligned} \Gamma(x+1)\thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x}+\frac{1}{810x^{6}} \biggr) ^{x/2} \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr) =W_{1} ( x ). \end{aligned}$$
For our new ones \(W_{2} ( x ) \) given in (1.6) and its counterpart \(W_{2}^{\ast} ( x ) \) given in (3.1), we easily check that
$$ \lim_{x\rightarrow\infty}\frac{\ln\Gamma ( x+1 ) -\ln W_{2} ( x ) }{x^{-9}}=\lim_{x\rightarrow\infty} \frac{\ln\Gamma ( x+1 ) -\ln W_{2}^{\ast} ( x ) }{x^{-9}}=\frac{869}{2{,}976{,}750}, $$
which show that the rates of \(W_{2} ( x ) \) and \(W_{2}^{\ast } ( x ) \) converging to \(\Gamma ( x+1 ) \) are both as \(x^{-9}\).
From these, we see that our new Windschitl type approximation formulas \(W_{2} ( x ) \) and \(W_{2}^{\ast} ( x ) \) are best among those listed above, which can also be seen from Table 1.
Table 1
Comparison among \(N_{2}\) (4.2), C (4.1), \(W_{1}\) (1.3) and \(W_{2}\) (1.6)
x
\(\vert \frac{N_{2} ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)
\(\vert \frac{C ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)
\(\vert \frac{W_{1} ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)
\(\vert \frac{W_{2} ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)
1
1.114 × 10−4
1.398 × 10−4
1.832 × 10−4
2.407 × 10−5
2
1.900 × 10−6
2.222 × 10−6
2.668 × 10−6
2.308 × 10−7
5
4.353 × 10−9
4.956 × 10−9
5.743 × 10−9
1.249 × 10−10
10
3.609 × 10−11
4.088 × 10−11
4.710 × 10−11
2.785 × 10−13
20
2.864 × 10−13
3.240 × 10−13
3.727 × 10−13
5.634 × 10−16
50
4.713 × 10−16
5.330 × 10−16
6.129 × 10−16
1.492 × 10−19
100
3.684 × 10−18
4.166 × 10−18
4.791 × 10−18
2.918 × 10−22

Acknowledgements

The authors would like to express their sincere thanks to the editors and reviewers for their great efforts to improve this paper. This work was supported by the Fundamental Research Funds for the Central Universities (No. 2015ZD29) and the Higher School Science Research Funds of Hebei Province of China (No. Z2015137).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH
2.
3.
go back to reference Wang, M.K., Chu, Y.M., Song, Y.Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNet Wang, M.K., Chu, Y.M., Song, Y.Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNet
5.
go back to reference Wang, M.K., Chu, Y.M., Jiang, Y.P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetCrossRefMATH Wang, M.K., Chu, Y.M., Jiang, Y.P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetCrossRefMATH
6.
go back to reference Wang, M.K., Chu, Y.M.: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. Ser. B Engl. Ed. 37(3), 607–622 (2017) MathSciNetCrossRef Wang, M.K., Chu, Y.M.: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. Ser. B Engl. Ed. 37(3), 607–622 (2017) MathSciNetCrossRef
7.
go back to reference Burnside, W.: A rapidly convergent series for \(\log N!\). Messenger Math. 46, 157–159 (1917) Burnside, W.: A rapidly convergent series for \(\log N!\). Messenger Math. 46, 157–159 (1917)
10.
11.
go back to reference Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988) MATH Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988) MATH
16.
go back to reference Yang, Z.-H., Chu, Y.-M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015) MathSciNet Yang, Z.-H., Chu, Y.-M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015) MathSciNet
19.
go back to reference Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. 93(1), 37–45 (2009) MathSciNetCrossRefMATH Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. 93(1), 37–45 (2009) MathSciNetCrossRefMATH
20.
go back to reference Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc Math. Notes 11(1), 79–86 (2010) MathSciNetMATH Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc Math. Notes 11(1), 79–86 (2010) MathSciNetMATH
22.
go back to reference Zhao, J.-L., Guo, B.-N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. (Debr.) 80(3–4), 333–342 (2012) MathSciNetCrossRefMATH Zhao, J.-L., Guo, B.-N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. (Debr.) 80(3–4), 333–342 (2012) MathSciNetCrossRefMATH
23.
go back to reference Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Model. 57, 1360–1363 (2013) MathSciNetCrossRef Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Model. 57, 1360–1363 (2013) MathSciNetCrossRef
24.
go back to reference Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014) MathSciNetCrossRefMATH Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014) MathSciNetCrossRefMATH
25.
26.
go back to reference Lu, D., Song, L., Ma, C.: Some new asymptotic approximations of the gamma function based on Nemes’ formula, Ramanujan’s formula and Burnside’s formula. Appl. Math. Comput. 253, 1–7 (2015) MathSciNetMATH Lu, D., Song, L., Ma, C.: Some new asymptotic approximations of the gamma function based on Nemes’ formula, Ramanujan’s formula and Burnside’s formula. Appl. Math. Comput. 253, 1–7 (2015) MathSciNetMATH
29.
go back to reference Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016) MathSciNetCrossRefMATH Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016) MathSciNetCrossRefMATH
31.
go back to reference Lu, D., Song, L., Ma, C.: A generated approximation of the gamma function related to Windschitl’s formula. J. Number Theory 140, 215–225 (2014) MathSciNetCrossRefMATH Lu, D., Song, L., Ma, C.: A generated approximation of the gamma function related to Windschitl’s formula. J. Number Theory 140, 215–225 (2014) MathSciNetCrossRefMATH
32.
go back to reference Chen, C.-P.: Asymptotic expansions of the gamma function related to Windschitl’s formula. Appl. Math. Comput. 245, 174–180 (2014) MathSciNetMATH Chen, C.-P.: Asymptotic expansions of the gamma function related to Windschitl’s formula. Appl. Math. Comput. 245, 174–180 (2014) MathSciNetMATH
33.
go back to reference Qi, F., Cerone, P., Dragomir, S.S., Srivastava, H.M.: Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values. Appl. Math. Comput. 208(1), 129–133 (2009) MathSciNetMATH Qi, F., Cerone, P., Dragomir, S.S., Srivastava, H.M.: Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values. Appl. Math. Comput. 208(1), 129–133 (2009) MathSciNetMATH
34.
35.
go back to reference Tian, J.F., Ha, M.H.: Properties and refinements of Aczél-type inequalities. J. Math. Inequal. 12(1), 175–189 (2018) Tian, J.F., Ha, M.H.: Properties and refinements of Aczél-type inequalities. J. Math. Inequal. 12(1), 175–189 (2018)
36.
go back to reference Abramowttz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972) Abramowttz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)
37.
go back to reference Yang, Z.-H., Chu, Y.-M., Tao, X.-J.: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014) MathSciNet Yang, Z.-H., Chu, Y.-M., Tao, X.-J.: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014) MathSciNet
38.
go back to reference Yang, Z.-H., Tian, J.: Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 12(1), 1–22 (2018) Yang, Z.-H., Tian, J.: Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 12(1), 1–22 (2018)
39.
go back to reference Yang, Z.-H., Tian, J.: Convexity and monotonicity for the elliptic integrals of the first kind and applications. arXiv:1705.05703 [math.CA] Yang, Z.-H., Tian, J.: Convexity and monotonicity for the elliptic integrals of the first kind and applications. arXiv:​1705.​05703 [math.CA]
Metadata
Title
An accurate approximation formula for gamma function
Authors
Zhen-Hang Yang
Jing-Feng Tian
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1646-6

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner