Skip to main content
Top
Published in: Experiments in Fluids 4/2021

01-04-2021 | Research Article

An accurate optical flow estimation of PIV using fluid velocity decomposition

Authors: Jin Lu, Hua Yang, Qinghu Zhang, Zhouping Yin

Published in: Experiments in Fluids | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we propose a novel optical flow formulation for estimating high-accuracy velocity fields from tracer particle image sequences. According to the Helmholtz velocity decomposition theorem, the proposed optical flow method decomposes the two-dimensional velocity field into four components: translation motion, linear distortion motion, shear distortion motion and rotation motion. In this context, regularization terms for different motion components are designed, which have a reasonable physical interpretation for the flow characteristics of the fluid. Subsequently, we design specific regularization parameters for the corresponding regularization terms according to the flow characteristics of the motion components. These regularization parameters can be adaptively adjusted with changes in the image space and velocity field. In addition, the data term of the optical flow formulation is based on the projected-motion equation derived from the continuity equation, which maintains the compressibility of the fluid in the two-dimensional plane. Velocity fields are estimated from synthetic tracer particle images and hypersonic experimental image sequences, and the velocity results are compared to those of an advanced cross-correlation-based PIV method and previous advanced optical flow methods. The results and comparisons indicate that the proposed method shows good performance and high measurement accuracy when acquiring compressible flow structures from fluid measurements.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge
go back to reference Astarita T (2008) Analysis of velocity interpolation schemes for image deformation methods in PIV. Exp Fluids 45(2):257–266CrossRef Astarita T (2008) Analysis of velocity interpolation schemes for image deformation methods in PIV. Exp Fluids 45(2):257–266CrossRef
go back to reference Becker F, Wieneke B, Petra S, Schröder A, Schnörr C (2012) Variational adaptive correlation method for flow estimation. IEEE Trans Image Process 21(6):3053–3065MathSciNetCrossRef Becker F, Wieneke B, Petra S, Schröder A, Schnörr C (2012) Variational adaptive correlation method for flow estimation. IEEE Trans Image Process 21(6):3053–3065MathSciNetCrossRef
go back to reference Bhatia H, Norgard G, Pascucci V, Bremer PT (2013) The Helmholtz-Hodge decompositiona survey. IEEE Trans Vis Comput Graph 19(8):1386–1404CrossRef Bhatia H, Norgard G, Pascucci V, Bremer PT (2013) The Helmholtz-Hodge decompositiona survey. IEEE Trans Vis Comput Graph 19(8):1386–1404CrossRef
go back to reference Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):8CrossRef Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):8CrossRef
go back to reference Carlier J, Wieneke B (2005) Report 1 on production and diffusion of fluid mechanics images and data. Fluid project deliverable 1.2. European Project “Fluid Image Analysis and Description” (FLUID). http://www.fluid.irisa.fr Carlier J, Wieneke B (2005) Report 1 on production and diffusion of fluid mechanics images and data. Fluid project deliverable 1.2. European Project “Fluid Image Analysis and Description” (FLUID). http://​www.​fluid.​irisa.​fr
go back to reference Cassisa C, Simoens S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754CrossRef Cassisa C, Simoens S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754CrossRef
go back to reference Chen X, Zillé P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56(1):8CrossRef Chen X, Zillé P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56(1):8CrossRef
go back to reference Corpetti T, Mémin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell 24(3):365–380CrossRef Corpetti T, Mémin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell 24(3):365–380CrossRef
go back to reference Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRef Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRef
go back to reference Corpetti T, Mémin E, Pérez P (2000) Estimating fluid optical flow. In: Proceedings of the 15th International Conference on Pattern Recognition, IEEE, vol 3, pp 1033–1036 Corpetti T, Mémin E, Pérez P (2000) Estimating fluid optical flow. In: Proceedings of the 15th International Conference on Pattern Recognition, IEEE, vol 3, pp 1033–1036
go back to reference Dérian P, Héas P, Herzet C, Mémin E (2013) Wavelets and optical flow motion estimation. Numer Math Theory Methods Appl 6(1):116–137MathSciNetCrossRef Dérian P, Héas P, Herzet C, Mémin E (2013) Wavelets and optical flow motion estimation. Numer Math Theory Methods Appl 6(1):116–137MathSciNetCrossRef
go back to reference Dérian P, Héas P, Herzet C, Mémin E (2011) Wavelet-based fluid motion estimation. In: Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision, Springer, pp 737–748 Dérian P, Héas P, Herzet C, Mémin E (2011) Wavelet-based fluid motion estimation. In: Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision, Springer, pp 737–748
go back to reference Drulea M, Nedevschi S (2011) Total variation regularization of local-global optical flow. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems, IEEE, pp 318–323 Drulea M, Nedevschi S (2011) Total variation regularization of local-global optical flow. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems, IEEE, pp 318–323
go back to reference Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608CrossRef Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608CrossRef
go back to reference Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393CrossRef Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393CrossRef
go back to reference Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203CrossRef Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203CrossRef
go back to reference Kadri-Harouna S, Dérian P, Héas P, Mémin E (2013) Divergence-free wavelets and high order regularization. Int J Comput Vision 103(1):80–99MathSciNetCrossRef Kadri-Harouna S, Dérian P, Héas P, Mémin E (2013) Divergence-free wavelets and high order regularization. Int J Comput Vision 103(1):80–99MathSciNetCrossRef
go back to reference Kähler CJ, Scharnowski S, Cierpka C (2012) On the resolution limit of digital particle image velocimetry. Exp Fluids 52(6):1629–1639CrossRef Kähler CJ, Scharnowski S, Cierpka C (2012) On the resolution limit of digital particle image velocimetry. Exp Fluids 52(6):1629–1639CrossRef
go back to reference Kohlberger T, Mémin E, Schnörr C (2003) Variational dense motion estimation using the Helmholtz decomposition. In: Proceedings of the International Conference on Scale-Space Theories in Computer Vision, Springer, pp 432–448 Kohlberger T, Mémin E, Schnörr C (2003) Variational dense motion estimation using the Helmholtz decomposition. In: Proceedings of the International Conference on Scale-Space Theories in Computer Vision, Springer, pp 432–448
go back to reference Lin WYD, Cheng MM, Lu J, Yang H, Do MN, Torr P (2014) Bilateral functions for global motion modeling. In: Proceedings of the European Conference on Computer Vision, Springer, pp 341–356 Lin WYD, Cheng MM, Lu J, Yang H, Do MN, Torr P (2014) Bilateral functions for global motion modeling. In: Proceedings of the European Conference on Computer Vision, Springer, pp 341–356
go back to reference Liu T (2017) Openopticalfow: an open source program for extraction of velocity felds from fow visualization images. J Open Res Softw 5(1):29CrossRef Liu T (2017) Openopticalfow: an open source program for extraction of velocity felds from fow visualization images. J Open Res Softw 5(1):29CrossRef
go back to reference Liu T, Merat A, Makhmalbaf M, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):166CrossRef Liu T, Merat A, Makhmalbaf M, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):166CrossRef
go back to reference Liu W, Ribeiro E (2011) A higher-order model for fluid motion estimation. In: Proceedings of the International Conference Image Analysis and Recognition, Springer, pp 325–334 Liu W, Ribeiro E (2011) A higher-order model for fluid motion estimation. In: Proceedings of the International Conference Image Analysis and Recognition, Springer, pp 325–334
go back to reference Lu J, Yang H, Zhang Q, Yin Z (2019) A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows. Exp Fluids 60(9):142CrossRef Lu J, Yang H, Zhang Q, Yin Z (2019) A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows. Exp Fluids 60(9):142CrossRef
go back to reference Lu J, Yang H, Zhang Q, Yin Z (2019) PIV measurements of hypersonic laminar flow over a compression ramp. In: Proceedings of the 13th International Symposium on Particle Image Velocimetry, pp 797–806 Lu J, Yang H, Zhang Q, Yin Z (2019) PIV measurements of hypersonic laminar flow over a compression ramp. In: Proceedings of the 13th International Symposium on Particle Image Velocimetry, pp 797–806
go back to reference McWilliams JC (2006) Fundamentals of geophysical fluid dynamics. Cambridge University Press, CambridgeMATH McWilliams JC (2006) Fundamentals of geophysical fluid dynamics. Cambridge University Press, CambridgeMATH
go back to reference Quénot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25(3):177–189CrossRef Quénot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25(3):177–189CrossRef
go back to reference Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef
go back to reference Ruhnau P, Schnörr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42(1):61–78CrossRef Ruhnau P, Schnörr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42(1):61–78CrossRef
go back to reference Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32CrossRef Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32CrossRef
go back to reference Sánchez J, Monzón López N, Salgado de la Nuez AJ (2013) Robust optical flow estimation. IPOL J Image Process Online 3:252–270CrossRef Sánchez J, Monzón López N, Salgado de la Nuez AJ (2013) Robust optical flow estimation. IPOL J Image Process Online 3:252–270CrossRef
go back to reference Schmidt B, Sutton J (2019) High-resolution velocimetry from tracer particle fields using a wavelet-based optical flow method. Exp Fluids 60(3):37CrossRef Schmidt B, Sutton J (2019) High-resolution velocimetry from tracer particle fields using a wavelet-based optical flow method. Exp Fluids 60(3):37CrossRef
go back to reference Schmidt B, Sutton J (2020) Improvements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularization. Exp Fluids 61(2):32CrossRef Schmidt B, Sutton J (2020) Improvements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularization. Exp Fluids 61(2):32CrossRef
go back to reference Seong JH, Song MS, Nunez D, Manera A, Kim ES (2019) Velocity refinement of PIV using global optical flow. Exp Fluids 60(11):174CrossRef Seong JH, Song MS, Nunez D, Manera A, Kim ES (2019) Velocity refinement of PIV using global optical flow. Exp Fluids 60(11):174CrossRef
go back to reference Simonini A, Theunissen R, Masullo A, Vetrano MR (2019) PIV adaptive interrogation and sampling with image projection applied to water sloshing. Exp Therm Fluid Sci 102:559–574CrossRef Simonini A, Theunissen R, Masullo A, Vetrano MR (2019) PIV adaptive interrogation and sampling with image projection applied to water sloshing. Exp Therm Fluid Sci 102:559–574CrossRef
go back to reference Sun D, Roth S, Black MJ (2014) A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int J Comput Vis 106(2):115–137CrossRef Sun D, Roth S, Black MJ (2014) A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int J Comput Vis 106(2):115–137CrossRef
go back to reference Theunissen R, Scarano F, Riethmuller M (2007) An adaptive sampling and windowing interrogation method in PIV. Meas Sci Technol 18(1):275–287CrossRef Theunissen R, Scarano F, Riethmuller M (2007) An adaptive sampling and windowing interrogation method in PIV. Meas Sci Technol 18(1):275–287CrossRef
go back to reference Theunissen R, Scarano F, Riethmuller ML (2010) Spatially adaptive PIV interrogation based on data ensemble. Exp Fluids 48(5):875–887CrossRef Theunissen R, Scarano F, Riethmuller ML (2010) Spatially adaptive PIV interrogation based on data ensemble. Exp Fluids 48(5):875–887CrossRef
go back to reference Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436MathSciNetCrossRef Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436MathSciNetCrossRef
go back to reference Yu K, Xu J (2016) Adaptive PIV algorithm based on seeding density and velocity information. Flow Meas Instrum 51:21–29CrossRef Yu K, Xu J (2016) Adaptive PIV algorithm based on seeding density and velocity information. Flow Meas Instrum 51:21–29CrossRef
go back to reference Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imaging Vis 28(1):67–80MathSciNetCrossRef Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imaging Vis 28(1):67–80MathSciNetCrossRef
go back to reference Zhong Q, Yang H, Yin Z (2017) An optical flow algorithm based on gradient constancy assumption for PIV image processing. Meas Sci Technol 28(5):055208CrossRef Zhong Q, Yang H, Yin Z (2017) An optical flow algorithm based on gradient constancy assumption for PIV image processing. Meas Sci Technol 28(5):055208CrossRef
Metadata
Title
An accurate optical flow estimation of PIV using fluid velocity decomposition
Authors
Jin Lu
Hua Yang
Qinghu Zhang
Zhouping Yin
Publication date
01-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 4/2021
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-021-03176-w

Other articles of this Issue 4/2021

Experiments in Fluids 4/2021 Go to the issue

Premium Partners