Skip to main content
Top

2019 | OriginalPaper | Chapter

An Advanced Least Squares Twin Multi-class Classification Support Vector Machine for Few-Shot Classification

Authors : Yu Li, Zhonggeng Liu, Huadong Pan, Jun Yin, Xingming Zhang

Published in: Intelligence Science and Big Data Engineering. Big Data and Machine Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In classification tasks, deep learning methods yield high performance. However, owing to lack of enough annotated data, deep learning methods often underperformed. Therefore, we propose an advance version of least squares twin multi-class classification support vector machine (ALST-KSVC) which leads to low computational complexity and comparable accuracy based on LST-KSVC for few-shot classification. In ALST-KSVC, we modified optimization problems to construct a new “1-versus-1-versus-1” structure, proposed a new decision function, and constructed smaller number of classifiers than our baseline LST-KSVC. We empirically demonstrate that the proposed method has better classification accuracy than LST-KSVC. Especially, ALST-KSVC achieves the state-of-the-art performance on MNIST, USPS, Amazon, Caltech image datasets and Iris, Teaching evaluation, Balance, Wine, Transfusion UCI datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, May 2015 Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, May 2015
2.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on International Conference on Machine Learning. JMLR.org (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on International Conference on Machine Learning. JMLR.org (2015)
3.
go back to reference He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition (2015) He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition (2015)
4.
go back to reference Huang, G., Liu, Z., Laurens, V.D.M., et al.: Densely connected convolutional networks (2016) Huang, G., Liu, Z., Laurens, V.D.M., et al.: Densely connected convolutional networks (2016)
5.
go back to reference Kumar, M.A., Gopal, M.: Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 36(4), 7535–7543 (2009)CrossRef Kumar, M.A., Gopal, M.: Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 36(4), 7535–7543 (2009)CrossRef
6.
go back to reference Shao, Y.H., Deng, N.Y., Yang, Z.M.: Least squares recursive projection twin support vector machine for classification. Int. J. Mach. Learn. Cybern. 45(6), 2299–2307 (2012)MATH Shao, Y.H., Deng, N.Y., Yang, Z.M.: Least squares recursive projection twin support vector machine for classification. Int. J. Mach. Learn. Cybern. 45(6), 2299–2307 (2012)MATH
7.
go back to reference Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
8.
go back to reference Wu, Y.C., Lee, Y.S., Yang, J.C.: Robust and efficient multiclass SVM models for phrase pattern recognition. Pattern Recogn. 41(9), 2874–2889 (2008)CrossRef Wu, Y.C., Lee, Y.S., Yang, J.C.: Robust and efficient multiclass SVM models for phrase pattern recognition. Pattern Recogn. 41(9), 2874–2889 (2008)CrossRef
9.
go back to reference Liu, R., Wang, Y., Baba, T., et al.: SVM-based active feedback in image retrieval using clustering and unlabeled data. Pattern Recogn. 41(8), 2645–2655 (2008)CrossRef Liu, R., Wang, Y., Baba, T., et al.: SVM-based active feedback in image retrieval using clustering and unlabeled data. Pattern Recogn. 41(8), 2645–2655 (2008)CrossRef
10.
go back to reference Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)CrossRef Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)CrossRef
11.
go back to reference Shao, Y.H., Zhang, C.H., Wang, X.B., et al.: Improvements on twin support vector machines. IEEE Trans. Neural Netw. 22(6), 962–968 (2011)CrossRef Shao, Y.H., Zhang, C.H., Wang, X.B., et al.: Improvements on twin support vector machines. IEEE Trans. Neural Netw. 22(6), 962–968 (2011)CrossRef
12.
go back to reference Bottou, L., Cortes, C., Denker, J.S., et al.: Comparison of classifier methods: a case study in handwritten digit recognition. In: International Conference on Pattern Recognition (1994) Bottou, L., Cortes, C., Denker, J.S., et al.: Comparison of classifier methods: a case study in handwritten digit recognition. In: International Conference on Pattern Recognition (1994)
13.
go back to reference Krebel, U.: Pairwise classification and support vector machines. In: Advances in Kernel Methods. MIT Press (1999) Krebel, U.: Pairwise classification and support vector machines. In: Advances in Kernel Methods. MIT Press (1999)
14.
go back to reference Angulo, C., Parra, X., Català, A.: K-SVCR. A support vector machine for multi-class classification. Neurocomputing 55(1–2), 57–77 (2003)CrossRef Angulo, C., Parra, X., Català, A.: K-SVCR. A support vector machine for multi-class classification. Neurocomputing 55(1–2), 57–77 (2003)CrossRef
15.
go back to reference Xu, Y., Guo, R., Wang, L.: A twin multi-class classification support vector machine. Cogn. Comput. 5(4), 580–588 (2013)CrossRef Xu, Y., Guo, R., Wang, L.: A twin multi-class classification support vector machine. Cogn. Comput. 5(4), 580–588 (2013)CrossRef
16.
go back to reference Nasiri, J.A., Charkari, N.M., Jalili, S.: Least squares twin multi-class classification support vector machine. Pattern Recogn. 48(3), 984–992 (2015)CrossRef Nasiri, J.A., Charkari, N.M., Jalili, S.: Least squares twin multi-class classification support vector machine. Pattern Recogn. 48(3), 984–992 (2015)CrossRef
17.
go back to reference Cristianini, N.: An introduction to support vector machines and other kernel-based learning methods. Kybernetes 32(1), 1–28 (2001)MATH Cristianini, N.: An introduction to support vector machines and other kernel-based learning methods. Kybernetes 32(1), 1–28 (2001)MATH
18.
go back to reference Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (2003)MathSciNetCrossRef Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (2003)MathSciNetCrossRef
Metadata
Title
An Advanced Least Squares Twin Multi-class Classification Support Vector Machine for Few-Shot Classification
Authors
Yu Li
Zhonggeng Liu
Huadong Pan
Jun Yin
Xingming Zhang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-36204-1_20

Premium Partner