Skip to main content
Top

2019 | OriginalPaper | Chapter

An Efficient Traffic Prediction Model Using Deep Spatial-Temporal Network

Authors : Jie Xu, Yong Zhang, Yongzheng Jia, Chunxiao Xing

Published in: Collaborative Computing: Networking, Applications and Worksharing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently years, traffic prediction has become an important and challenging problem in smart urban traffic computing, which can be used for government for road planning, detecting bottle-neck congestions roads, pollution emissions estimating and so on. However, former data mining algorithms mainly address the problem by using the traditional mathematical or statistical theories, and they were impossible to model the spatial and temporal relationship simultaneously. To address these issues, we propose an end-to-end neural network named C-LSTM to predict the traffic congestion at next time interval. More specifically, the C-LSTM is based on CNN and LSTM to collectively capture the spatial-temporal dependencies on the road network. Inspired by the procedure of handling the image by CNN, the city-wide traffic maps are first converted into a series of static images like the video frame and then are fed into a deep learning architecture, in which CNN extracts the spatial characteristics, and LSTM extracts the temporal characteristics. In addition, we also consider some external factors to further improve the prediction accuracy. Extensive experiments on reality Beijing transportation datasets demonstrate the superiority of our method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. Hinton (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. Hinton (2012)
2.
go back to reference Shu, Y., Jin, Z., Zhang, L., et al.: Traffic prediction using FARIMA models. In: IEEE International Conference on Communications, ICC 1999, vol. 2, pp. 891–895. IEEE (1999) Shu, Y., Jin, Z., Zhang, L., et al.: Traffic prediction using FARIMA models. In: IEEE International Conference on Communications, ICC 1999, vol. 2, pp. 891–895. IEEE (1999)
3.
go back to reference Wang, D., Zhang, J., Cao, W., et al.: When will you arrive? Estimating travel time based on deep neural networks. In: AAAI (2018) Wang, D., Zhang, J., Cao, W., et al.: When will you arrive? Estimating travel time based on deep neural networks. In: AAAI (2018)
4.
go back to reference Yu, H., Wu, Z., Wang, S., et al.: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501 (2017)CrossRef Yu, H., Wu, Z., Wang, S., et al.: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501 (2017)CrossRef
5.
go back to reference Yao, H., Wu, F., Ke, J., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:1802.08714 (2018) Yao, H., Wu, F., Ke, J., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:​1802.​08714 (2018)
6.
go back to reference Ke, J., Zheng, H., Yang, H., et al.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 85, 591–608 (2017)CrossRef Ke, J., Zheng, H., Yang, H., et al.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 85, 591–608 (2017)CrossRef
7.
go back to reference Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661 (2017) Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661 (2017)
8.
go back to reference Xingjian, S.H.I., Chen, Z., Wang, H., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810. MLA (2015) Xingjian, S.H.I., Chen, Z., Wang, H., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810. MLA (2015)
9.
go back to reference Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 29 (2015) Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 29 (2015)
10.
go back to reference Clark, S.: Traffic prediction using multivariate nonparametric regression. J. Transp. Eng. 129(2), 161–168 (2003)CrossRef Clark, S.: Traffic prediction using multivariate nonparametric regression. J. Transp. Eng. 129(2), 161–168 (2003)CrossRef
11.
go back to reference Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 19(4), 606–616 (2011)CrossRef Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 19(4), 606–616 (2011)CrossRef
12.
go back to reference Song, X., Kanasugi, H., Shibasaki, R.: DeepTransport: prediction and simulation of human mobility and transportation mode at a citywide level. In: IJCAI, vol. 16, pp. 2618–2624 (2016) Song, X., Kanasugi, H., Shibasaki, R.: DeepTransport: prediction and simulation of human mobility and transportation mode at a citywide level. In: IJCAI, vol. 16, pp. 2618–2624 (2016)
13.
go back to reference Liao, S., Zhou, L., Di, X., et al.: Large-scale short-term urban taxi demand forecasting using deep learning. In: Proceedings of the 23rd Asia and South Pacific Design Automation Conference, pp. 428–433. IEEE Press (2018) Liao, S., Zhou, L., Di, X., et al.: Large-scale short-term urban taxi demand forecasting using deep learning. In: Proceedings of the 23rd Asia and South Pacific Design Automation Conference, pp. 428–433. IEEE Press (2018)
14.
go back to reference Zhang, S., Wu, G., Costeira, J.P., et al.: FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3687–3696. IEEE (2017) Zhang, S., Wu, G., Costeira, J.P., et al.: FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3687–3696. IEEE (2017)
15.
go back to reference He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
16.
go back to reference Ma, X., Tao, Z., Wang, Y., et al.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 54, 187–197 (2015)CrossRef Ma, X., Tao, Z., Wang, Y., et al.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 54, 187–197 (2015)CrossRef
17.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
18.
go back to reference Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999) Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)
19.
go back to reference Wang, J., Gu, Q., Wu, J., et al.: Traffic speed prediction and congestion source exploration: a deep learning method. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 499–508. IEEE (2016) Wang, J., Gu, Q., Wu, J., et al.: Traffic speed prediction and congestion source exploration: a deep learning method. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 499–508. IEEE (2016)
20.
go back to reference Zheng, Y.: Methodologies for cross-domain data fusion: an overview. IEEE Trans. Big Data 1(1), 16–34 (2015)CrossRef Zheng, Y.: Methodologies for cross-domain data fusion: an overview. IEEE Trans. Big Data 1(1), 16–34 (2015)CrossRef
21.
go back to reference Ta, N., Li, G., Zhao, T., et al.: An efficient ride-sharing framework for maximizing shared route. IEEE Trans. Knowl. Data Eng. (TKDE) 30, 219–233 (2017)CrossRef Ta, N., Li, G., Zhao, T., et al.: An efficient ride-sharing framework for maximizing shared route. IEEE Trans. Knowl. Data Eng. (TKDE) 30, 219–233 (2017)CrossRef
22.
go back to reference Tong, Y., Chen, Y., Zhou, Z., et al.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1653–1662. ACM (2017) Tong, Y., Chen, Y., Zhou, Z., et al.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1653–1662. ACM (2017)
23.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Metadata
Title
An Efficient Traffic Prediction Model Using Deep Spatial-Temporal Network
Authors
Jie Xu
Yong Zhang
Yongzheng Jia
Chunxiao Xing
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-12981-1_27