Skip to main content
Top
Published in: Optical and Quantum Electronics 2/2024

01-02-2024

An efficient XOR design based on NNI and five-input majority voter in quantum-dot cellular automata

Author: Mengbo Sun

Published in: Optical and Quantum Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As an emerging nanodevice, Quantum-dot cellular automata (QCA) is a hopeful candidate for conventional complementary metal oxide semiconductor devices. XOR, one of the most vital gates, occupies a significant positon in digital logic circuits. In order to improve the property performance of XOR, a novel five-input majority gate is put forward first. Then, an efficient XOR employing a NAND-NOR-Inverter (NNI) and the proposed five-input majority voter is realized in the paper. Compared with previous counterparts based on gates, the proposed design requires fewer cells, occupies less area, and consumes less average energy consumption. Specifically, it improves by 11.11% in cell count, 2.11% in area, and 9.51% (1.5Ek) in energy consumption when compared to the state-of-the-art design. The clock delay of the XOR in the article keeps the same with the minimum of them. Additionally, the proposed design has the lowest QCA cost, including area-delay cost, QCA-specific cost, and energy-delay cost. Moreover, the design is coplanar, without any crossing types. All these make it an outstanding design. To demonstrate its practicality, n-bit parity generators using the proposed XOR are implemented. The novel 4-bit parity generator excels in cell count, area, and average energy dissipation, achieving optimization of up to 10.6%, 6.0%, and 38.6% (0.5Ek), respectively, compared to previous optimum values. The significance of these optimization results becomes more pronounced as the bit of parity generators increases, indicating a promising future for constructing complex circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Angizi, S., Alkaldy, E., Bagherzadeh, N., et al.: Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014)CrossRef Angizi, S., Alkaldy, E., Bagherzadeh, N., et al.: Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014)CrossRef
go back to reference Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transisitors. Science 294(5545), 1317–1320 (2001)CrossRefPubMedADS Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transisitors. Science 294(5545), 1317–1320 (2001)CrossRefPubMedADS
go back to reference Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circ. Syst. 4(2), 147–156 (2013)CrossRef Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circ. Syst. 4(2), 147–156 (2013)CrossRef
go back to reference Chabi, A.M., Sayedsalehi, S., Angizi, S., et al.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Notices 2014, 1–9 (2014)CrossRef Chabi, A.M., Sayedsalehi, S., Angizi, S., et al.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Notices 2014, 1–9 (2014)CrossRef
go back to reference Chaudhary, A., Chen, D.Z., Hu, X.S., Niemier, M.T., et al.: Fabricatable interconnect and molecular QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(11), 1978–1991 (2007)CrossRef Chaudhary, A., Chen, D.Z., Hu, X.S., Niemier, M.T., et al.: Fabricatable interconnect and molecular QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(11), 1978–1991 (2007)CrossRef
go back to reference De, D., Purkayastha, T., Chattopadhyay, T.: Design of QCA based programmable logic array using decoder. Microelectron. J. 55(2), 92–107 (2016)CrossRef De, D., Purkayastha, T., Chattopadhyay, T.: Design of QCA based programmable logic array using decoder. Microelectron. J. 55(2), 92–107 (2016)CrossRef
go back to reference DeHon A., Wilson M.J.: Nanowire-based sublithographic programmable logic arrays. In: Proceedings International Symposium on Field-Programmable Gate Arrays, 123–132 (2004) DeHon A., Wilson M.J.: Nanowire-based sublithographic programmable logic arrays. In: Proceedings International Symposium on Field-Programmable Gate Arrays, 123–132 (2004)
go back to reference Fahmy H. A., Kiehl R. A.: Complete logic family using tunneling-phase-logic devices. In: Proceedings of the IEEE International Conference Microelectronics, Kuwait City, Kuwait, 22–24 (1999) Fahmy H. A., Kiehl R. A.: Complete logic family using tunneling-phase-logic devices. In: Proceedings of the IEEE International Conference Microelectronics, Kuwait City, Kuwait, 22–24 (1999)
go back to reference Farazkish, R., Azghadi, M.R., Navi, K., Haghaparast, M.: New method for decreasing the number of quantum dot cells in QCA circuits. World Appl. Sci. J. 4(6), 793–802 (2008) Farazkish, R., Azghadi, M.R., Navi, K., Haghaparast, M.: New method for decreasing the number of quantum dot cells in QCA circuits. World Appl. Sci. J. 4(6), 793–802 (2008)
go back to reference Henderson, S.C., Johnson, E.W., Janulis, J.R., Tougaw, P.D.: Incorporating standard CMOS design process methodologies into the QCA logic design process. IEEE Trans. Nanotechnol. 3(1), 2–9 (2004)CrossRefADS Henderson, S.C., Johnson, E.W., Janulis, J.R., Tougaw, P.D.: Incorporating standard CMOS design process methodologies into the QCA logic design process. IEEE Trans. Nanotechnol. 3(1), 2–9 (2004)CrossRefADS
go back to reference Jagarlamudi, H.S., Saha, M., Jagarlamudi, P.K.: Quantum dot cellular automata based effective design of combinational and sequential logical structures. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5(12), 1529–1533 (2011) Jagarlamudi, H.S., Saha, M., Jagarlamudi, P.K.: Quantum dot cellular automata based effective design of combinational and sequential logical structures. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5(12), 1529–1533 (2011)
go back to reference Khan, A., Arya, R.: Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int. Nano Lett. 12, 67–77 (2022)CrossRef Khan, A., Arya, R.: Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int. Nano Lett. 12, 67–77 (2022)CrossRef
go back to reference Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., et al.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)CrossRef Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., et al.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)CrossRef
go back to reference Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetCrossRef Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetCrossRef
go back to reference Kumar, D., Mitra, D., Bhattacharya, B.B.: On fault-tolerant design of exclusive-OR gates in QCA. J. Comput. Electron. 16(3), 896–906 (2017)CrossRef Kumar, D., Mitra, D., Bhattacharya, B.B.: On fault-tolerant design of exclusive-OR gates in QCA. J. Comput. Electron. 16(3), 896–906 (2017)CrossRef
go back to reference Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bemstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRefADS Lent, C.S., Tougaw, P.D., Porod, W., Bemstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRefADS
go back to reference Mohammadi, H., Navi, K.: Energy-efficient single-layer QCA logical circuits based on a novel XOR gate. J. Circ. Syst. Comput. 27(14), 1–19 (2018)CrossRef Mohammadi, H., Navi, K.: Energy-efficient single-layer QCA logical circuits based on a novel XOR gate. J. Circ. Syst. Comput. 27(14), 1–19 (2018)CrossRef
go back to reference Mohammadi, M., Gorgin, S., Mohammadi, M.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits Devices Syst. 11(2), 135–141 (2017)CrossRef Mohammadi, M., Gorgin, S., Mohammadi, M.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits Devices Syst. 11(2), 135–141 (2017)CrossRef
go back to reference Mustafa, M., Beigh, M.R.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51(1), 60–66 (2013) Mustafa, M., Beigh, M.R.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51(1), 60–66 (2013)
go back to reference Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circ. Syst. Comput. 27(7), 1–24 (2018)CrossRef Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circ. Syst. Comput. 27(7), 1–24 (2018)CrossRef
go back to reference Roohi, A., Khademolhosseini, H., Sayedsalehi, S., et al.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues 8(6), 55–60 (2011) Roohi, A., Khademolhosseini, H., Sayedsalehi, S., et al.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues 8(6), 55–60 (2011)
go back to reference Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design and analysis of ultra-low power QCA parity generator circuit. Adv. Power Syst. Energy Manag. 436, 347–354 (2018)CrossRef Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design and analysis of ultra-low power QCA parity generator circuit. Adv. Power Syst. Energy Manag. 436, 347–354 (2018)CrossRef
go back to reference Seminario, J.M., Derosa, P.A., Cordova, L.E., et al.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3(1), 215–218 (2004)CrossRefADS Seminario, J.M., Derosa, P.A., Cordova, L.E., et al.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3(1), 215–218 (2004)CrossRefADS
go back to reference Sen B., Sikdar B. K.: Characterization of universal nand-nor-inverter. VDAT. In: Proceedings of 11th IEEE VLSI Design and Test Symposium (2007) Sen B., Sikdar B. K.: Characterization of universal nand-nor-inverter. VDAT. In: Proceedings of 11th IEEE VLSI Design and Test Symposium (2007)
go back to reference Shah, N.A., Khanday, F.A., Iqbal, J.: Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. Commun. Inf. Sci. Manag. Eng. 2(4), 8–18 (2012) Shah, N.A., Khanday, F.A., Iqbal, J.: Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. Commun. Inf. Sci. Manag. Eng. 2(4), 8–18 (2012)
go back to reference Sheikhfaal, S., Navi, K., Keivan, A., et al.: Designing high-speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter 4(2), 190–197 (2015a)CrossRef Sheikhfaal, S., Navi, K., Keivan, A., et al.: Designing high-speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter 4(2), 190–197 (2015a)CrossRef
go back to reference Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015b)CrossRef Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015b)CrossRef
go back to reference Singh, G., Sarin, R.K., Raj, B.: A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15(2), 455–465 (2016)CrossRef Singh, G., Sarin, R.K., Raj, B.: A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15(2), 455–465 (2016)CrossRef
go back to reference Suresh, K., Ghosh, B.: Ripple carry adder using two XOR gates in QCA. Mater. Sci. Mech. Eng. 467, 531–535 (2014) Suresh, K., Ghosh, B.: Ripple carry adder using two XOR gates in QCA. Mater. Sci. Mech. Eng. 467, 531–535 (2014)
go back to reference Teja, V.C., Polisetti, S., Kasavajjala, S.: QCA based multiplexing of 16 arithmetic & logical subsystems-A paradigm for nano computing. IEEE Int. Conf. Nano/micro Eng. Mol. Syst. 1–3, 758–763 (2008)CrossRef Teja, V.C., Polisetti, S., Kasavajjala, S.: QCA based multiplexing of 16 arithmetic & logical subsystems-A paradigm for nano computing. IEEE Int. Conf. Nano/micro Eng. Mol. Syst. 1–3, 758–763 (2008)CrossRef
go back to reference Zhang, Y.Q., Deng, F.F., Cheng, X., Xie, G.J.: Coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology. Int. J. Theor. Phys. 59(2), 484–501 (2020)CrossRef Zhang, Y.Q., Deng, F.F., Cheng, X., Xie, G.J.: Coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology. Int. J. Theor. Phys. 59(2), 484–501 (2020)CrossRef
Metadata
Title
An efficient XOR design based on NNI and five-input majority voter in quantum-dot cellular automata
Author
Mengbo Sun
Publication date
01-02-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 2/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05729-1

Other articles of this Issue 2/2024

Optical and Quantum Electronics 2/2024 Go to the issue