Skip to main content
Top

2022 | OriginalPaper | Chapter

9. An Electrochemo-Poromechanical Theory for the Mechanobioelectricity of Cell Clusters

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is adapted from “Leronni [11], Modeling the mechanobioelectricity of cell clusters, Biomechanics and Modeling in Mechanobiology, 20:535–554”.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In Eq. (9.47b), \(D_\mathrm {i}^\mathrm {m}\) is regarded as a constant. Actually, the value of \(D_\mathrm {i}^\mathrm {m}\) depends on the gating of ion channels. For certain applications, it may be relevant to explicitly account for this. In general, in the presence of voltage-gated, ligand-gated and mechanosensitive ion channels, \(D_\mathrm {i}^\mathrm {m}\) could be written as:
$$\begin{aligned} D_\mathrm {i}^\mathrm {m}=D_\mathrm {i}^\mathrm {m,0} +D_\mathrm {i}^\mathrm {VC}p_\mathrm {open}^\mathrm {VC}(\psi ^\mathrm {m}) +D_\mathrm {i}^\mathrm {LC}p_\mathrm {open}^\mathrm {LC}(C_\mathrm {i},C_\mathrm {i}^\mathrm {e}) +D_\mathrm {i}^\mathrm {MC}p_\mathrm {open}^\mathrm {MC}(p_\mathrm {mec})\,, \end{aligned}$$
(9.48)
where \(D_\mathrm {i}^\mathrm {VC}\), \(D_\mathrm {i}^\mathrm {LC}\) and \(D_\mathrm {i}^\mathrm {MC}\) are the diffusivities across the (open) voltage-gated, ligand-gated and mechanosensitive channels, and \(p_\mathrm {open}^\mathrm {VC}\), \(p_\mathrm {open}^\mathrm {LC}\) and \(p_\mathrm {open}^\mathrm {MC}\) are the respective open probabilities, modulated by the membrane potential \(\psi ^\mathrm {m}\), the IC and EC ion concentrations \(C_\mathrm {i}\) and \(C_\mathrm {i}^\mathrm {e}\), and the mechanical pressure \(p_\mathrm {mec}\), respectively; \(D_\mathrm {i}^\mathrm {m,0}\) denotes the diffusivity across the lipid bilayer. Equation (9.48) extends Eq. (8.​50), where only mechanosensitive channels are considered.
 
2
The pull back operation is defined by the relations \(\mathbf {J}=J\mathbf {F}^{-1}\mathbf {j}\) and \(\mathrm {grad}=\mathbf {F}^\mathrm {-T}\nabla \).
 
Literature
1.
go back to reference Alberts B (1983) Molecular biology of the cell. Garland Science, New York, NY Alberts B (1983) Molecular biology of the cell. Garland Science, New York, NY
2.
go back to reference Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233 Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233
3.
go back to reference Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445CrossRef Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445CrossRef
5.
go back to reference Gramse G, Dols-Pérez A, Edwards M, Fumagalli L, Gomila G (2013) Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys J 104(6):1257–1262CrossRef Gramse G, Dols-Pérez A, Edwards M, Fumagalli L, Gomila G (2013) Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys J 104(6):1257–1262CrossRef
6.
go back to reference Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge, UKCrossRef Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge, UKCrossRef
7.
go back to reference Hille B (1984) Ion channels of excitable membranes. Sinauer Associates Inc, Sunderland, MA Hille B (1984) Ion channels of excitable membranes. Sinauer Associates Inc, Sunderland, MA
8.
go back to reference Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577MathSciNetCrossRef Hong W, Zhao X, Suo Z (2010) Large deformation and electrochemistry of polyelectrolyte gels. J Mech Phys Solids 58:558–577MathSciNetCrossRef
9.
go back to reference Huyghe JM, Janssen J (1997) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35(8):793–802CrossRef Huyghe JM, Janssen J (1997) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35(8):793–802CrossRef
10.
go back to reference Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics. Biophys J 105(3):609–619CrossRef Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics. Biophys J 105(3):609–619CrossRef
11.
go back to reference Leronni A (2021) Modeling the mechanobioelectricity of cell clusters. Biomech Model Mechanobiol 20:535–554CrossRef Leronni A (2021) Modeling the mechanobioelectricity of cell clusters. Biomech Model Mechanobiol 20:535–554CrossRef
12.
go back to reference Leronni A, Bardella L, Dorfmann L, Pietak A, Levin M (2020) On the coupling of mechanics with bioelectricity and its role in morphogenesis. J R Soc Interface 17(167):20200177CrossRef Leronni A, Bardella L, Dorfmann L, Pietak A, Levin M (2020) On the coupling of mechanics with bioelectricity and its role in morphogenesis. J R Soc Interface 17(167):20200177CrossRef
13.
go back to reference Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric “constant’’ of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9(4):2126–2136CrossRef Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric “constant’’ of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9(4):2126–2136CrossRef
14.
go back to reference Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261CrossRef Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261CrossRef
15.
go back to reference Nuccitelli R (2003) A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58(2):1–26 Nuccitelli R (2003) A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58(2):1–26
16.
go back to reference Onsager L (1931) Reciprocal relations in irreversible processes. I Phys Rev 37(4):405CrossRef Onsager L (1931) Reciprocal relations in irreversible processes. I Phys Rev 37(4):405CrossRef
17.
go back to reference Overbeek JT (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6(1):57–84CrossRef Overbeek JT (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6(1):57–84CrossRef
18.
go back to reference Pietak A, Levin M (2016) Exploring instructive physiological signaling with the BioElectric Tissue Simulation Engine. Front Bioeng Biotechnol 4:55CrossRef Pietak A, Levin M (2016) Exploring instructive physiological signaling with the BioElectric Tissue Simulation Engine. Front Bioeng Biotechnol 4:55CrossRef
19.
go back to reference Pietak A, Levin M (2017) Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J R Soc Interface 14(134):20170425CrossRef Pietak A, Levin M (2017) Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J R Soc Interface 14(134):20170425CrossRef
20.
21.
go back to reference Silver BB, Wolf AE, Lee J, Pang M-F, Nelson CM (2020) Epithelial tissue geometry directs emergence of bioelectric field and pattern of proliferation. Mol Biol Cell 31:1691–1702CrossRef Silver BB, Wolf AE, Lee J, Pang M-F, Nelson CM (2020) Epithelial tissue geometry directs emergence of bioelectric field and pattern of proliferation. Mol Biol Cell 31:1691–1702CrossRef
22.
go back to reference Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46(2):201–215CrossRef Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46(2):201–215CrossRef
23.
go back to reference Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5(3):231–246CrossRef Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5(3):231–246CrossRef
24.
go back to reference Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Bio 2(4):285–293CrossRef Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Bio 2(4):285–293CrossRef
25.
go back to reference Vanag VK, Epstein IR (2009) Cross-diffusion and pattern formation in reaction-diffusion systems. Phys Chem Chem Phys 11(6):897–912CrossRef Vanag VK, Epstein IR (2009) Cross-diffusion and pattern formation in reaction-diffusion systems. Phys Chem Chem Phys 11(6):897–912CrossRef
26.
go back to reference Yellin F, Li Y, Sreenivasan VK, Farrell B, Johny MB, Yue D, Sun SX (2018) Electromechanics and volume dynamics in nonexcitable tissue cells. Biophys J 114(9):2231–2242CrossRef Yellin F, Li Y, Sreenivasan VK, Farrell B, Johny MB, Yue D, Sun SX (2018) Electromechanics and volume dynamics in nonexcitable tissue cells. Biophys J 114(9):2231–2242CrossRef
Metadata
Title
An Electrochemo-Poromechanical Theory for the Mechanobioelectricity of Cell Clusters
Author
Alessandro Leronni
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92276-4_9

Premium Partners