Skip to main content
Top
Published in: Acta Mechanica 2/2024

16-11-2023 | Original Paper

An electromechanical coupling isogeometric approach using zig-zag function for modeling and smart damping control of multilayer PFG-GPRC plates

Authors: T. Nguyen-Thoi, Duy-Khuong Ly, S. Kattimani, Chanachai Thongchom

Published in: Acta Mechanica | Issue 2/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, a novel numerical approach based on electromechanical coupling isogeometric analysis employing a piecewise linear zig-zag function is proposed for modeling and analysis of smart constrained layer damping (SCLD) treatment in multilayer porous functionally graded graphene platelets-reinforced composite (PFG-GPRC) plates. The approach efficiently approximates the geometric, mechanical, and electric displacement fields by utilizing non-uniform rational B-splines (NURBS) basis functions. These basis functions are subsequently integrated with the zig-zag formulation to characterize the system dynamic and help handle both continuous/discontinuous material properties at all interfaces, as well as improve the effectiveness of global–local numerical solutions for the analysis of current structures. The multilayer PFG-GPRC plate model is designed to incorporate porous, uniformly, or non-uniformly distributed layers based on three different graphene platelet patterns. The analysis of the SCLD treatment encompasses an examination of the frequency response function of the damped structure under passive/hybrid mechanisms, taking into account viscoelastic behavior and the converse piezoelectric effect. Reliability in the current analysis is demonstrated through a validation study, and a comprehensive parametric investigation is undertaken to analyze the impact of various parameters related to graphene platelets (GPLs) and distribution types of porosity on the damping behavior of multilayer PFG-GPRC plates.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001) Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)
2.
go back to reference Mehar, K., Panda, S.K., Sharma, N.: Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure. Eng. Struct. 211, 110444 (2020) Mehar, K., Panda, S.K., Sharma, N.: Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure. Eng. Struct. 211, 110444 (2020)
3.
go back to reference Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)PubMed Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)PubMed
4.
go back to reference Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)ADSPubMed Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)ADSPubMed
5.
go back to reference Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)ADSPubMed Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)ADSPubMed
6.
go back to reference Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)ADSPubMed Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)ADSPubMed
7.
go back to reference Ramteke, P.M., Mahapatra, B.P., Panda, S.K., Sharma, N.: Static deflection simulation study of 2d functionally graded porous structure. Mater. Today Proc. 33, 5544–5547 (2020) Ramteke, P.M., Mahapatra, B.P., Panda, S.K., Sharma, N.: Static deflection simulation study of 2d functionally graded porous structure. Mater. Today Proc. 33, 5544–5547 (2020)
8.
go back to reference Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P., Panda, S.K.: Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach. Eng. Comput. 38(Suppl 4), 3077–3097 (2022) Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P., Panda, S.K.: Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach. Eng. Comput. 38(Suppl 4), 3077–3097 (2022)
9.
go back to reference Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017) Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)
10.
go back to reference Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017) Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)
11.
go back to reference Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLS). Compos. B Eng. 110, 132–140 (2017) Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLS). Compos. B Eng. 110, 132–140 (2017)
12.
go back to reference Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B Eng. 134, 106–113 (2018) Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B Eng. 134, 106–113 (2018)
13.
go back to reference Thai, C.H., Ferreira, A., Tran, T., Phung-Van, P.: Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the nurbs formulation. Compos. Struct. 220, 749–759 (2019) Thai, C.H., Ferreira, A., Tran, T., Phung-Van, P.: Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the nurbs formulation. Compos. Struct. 220, 749–759 (2019)
14.
go back to reference Wang, Y., Xie, K., Fu, T., Shi, C.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019) Wang, Y., Xie, K., Fu, T., Shi, C.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019)
15.
go back to reference Nematollahi, M.S., Mohammadi, H., Dimitri, R., Tornabene, F.: Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams. Appl. Sci. 10(16), 5669 (2020) Nematollahi, M.S., Mohammadi, H., Dimitri, R., Tornabene, F.: Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams. Appl. Sci. 10(16), 5669 (2020)
16.
go back to reference Yang, Z., Zhao, S., Yang, J., Lv, J., Liu, A., Fu, J.: In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements. Mech. Adv. Mater. Struct. 28(19), 2046–2056 (2021) Yang, Z., Zhao, S., Yang, J., Lv, J., Liu, A., Fu, J.: In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements. Mech. Adv. Mater. Struct. 28(19), 2046–2056 (2021)
17.
go back to reference Preumont, A., Seto, K.: Active Control of Structures. Wiley, New York (2008) Preumont, A., Seto, K.: Active Control of Structures. Wiley, New York (2008)
18.
go back to reference Zhang, J., He, L., Wang, E., Gao, R.: Active vibration control of flexible structures using piezoelectric materials. In: 2009 International Conference on Advanced Computer Control, pp. 540–545. IEEE (2009) Zhang, J., He, L., Wang, E., Gao, R.: Active vibration control of flexible structures using piezoelectric materials. In: 2009 International Conference on Advanced Computer Control, pp. 540–545. IEEE (2009)
19.
go back to reference Selim, B., Liu, Z., Liew, K.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 145, 106372 (2019) Selim, B., Liu, Z., Liew, K.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 145, 106372 (2019)
20.
go back to reference Nguyen, N.V., Lee, J., Nguyen-Xuan, H.: Active vibration control of GPLS-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Compos. B Eng. 172, 769–784 (2019) Nguyen, N.V., Lee, J., Nguyen-Xuan, H.: Active vibration control of GPLS-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Compos. B Eng. 172, 769–784 (2019)
21.
go back to reference Nguyen, L.B., Nguyen, N.V., Thai, C.H., Ferreira, A., Nguyen-Xuan, H.: An isogeometric bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Compos. Struct. 214, 227–245 (2019) Nguyen, L.B., Nguyen, N.V., Thai, C.H., Ferreira, A., Nguyen-Xuan, H.: An isogeometric bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Compos. Struct. 214, 227–245 (2019)
22.
go back to reference Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)MathSciNet Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)MathSciNet
23.
go back to reference Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021) Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)
24.
go back to reference Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator. Compos. Struct. 157, 121–130 (2016) Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator. Compos. Struct. 157, 121–130 (2016)
25.
go back to reference Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator. Eur. J. Mech A Solids 60, 300–314 (2016)ADS Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator. Eur. J. Mech A Solids 60, 300–314 (2016)ADS
26.
go back to reference Baz, A.M.: Active and Passive Vibration Damping. Wiley, New York (2019) Baz, A.M.: Active and Passive Vibration Damping. Wiley, New York (2019)
27.
go back to reference Ray, M., Pradhan, A.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)ADS Ray, M., Pradhan, A.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)ADS
28.
go back to reference Ray, M., Reddy, J.: Active damping of laminated cylindrical shells conveying fluid using 1–3 piezoelectric composites. Compos. Struct. 98, 261–271 (2013) Ray, M., Reddy, J.: Active damping of laminated cylindrical shells conveying fluid using 1–3 piezoelectric composites. Compos. Struct. 98, 261–271 (2013)
29.
go back to reference Kattimani, S., Ray, M.: Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos. Struct. 114, 51–63 (2014) Kattimani, S., Ray, M.: Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos. Struct. 114, 51–63 (2014)
30.
go back to reference Kumar, A., Ray, M.: Control of smart rotating laminated composite truncated conical shell using ACLD treatment. Int. J. Mech. Sci. 89, 123–141 (2014) Kumar, A., Ray, M.: Control of smart rotating laminated composite truncated conical shell using ACLD treatment. Int. J. Mech. Sci. 89, 123–141 (2014)
31.
go back to reference Datta, P., Ray, M.: Three-dimensional fractional derivative model of smart constrained layer damping treatment for composite plates. Compos. Struct. 156, 291–306 (2016) Datta, P., Ray, M.: Three-dimensional fractional derivative model of smart constrained layer damping treatment for composite plates. Compos. Struct. 156, 291–306 (2016)
32.
go back to reference Nguyen-Thoi, T., Ly, K.D., Truong, T.T., Nguyen, S.N., Mahesh, V.: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed fem and metaheuristic algorithm. Eng. Struct. 259, 114062 (2022) Nguyen-Thoi, T., Ly, K.D., Truong, T.T., Nguyen, S.N., Mahesh, V.: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed fem and metaheuristic algorithm. Eng. Struct. 259, 114062 (2022)
33.
go back to reference Ramteke, P.M.: Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel Compos. Struct. Int. J. 33(6), 865–875 (2019) Ramteke, P.M.: Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel Compos. Struct. Int. J. 33(6), 865–875 (2019)
34.
go back to reference Ramteke, P.M., Panda, S.K.: Free vibrational behaviour of multi-directional porous functionally graded structures. Arab. J. Sci. Eng. 46, 7741–7756 (2021) Ramteke, P.M., Panda, S.K.: Free vibrational behaviour of multi-directional porous functionally graded structures. Arab. J. Sci. Eng. 46, 7741–7756 (2021)
35.
go back to reference Ramteke, P.M., Panda, S.K.: Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: a comprehensive review. Arch. Comput. Methods Eng. 30(5), 3437–3452 (2023) Ramteke, P.M., Panda, S.K.: Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: a comprehensive review. Arch. Comput. Methods Eng. 30(5), 3437–3452 (2023)
36.
go back to reference Sharma, A., Kumar, A., Susheel, C., Kumar, R.: Smart damping of functionally graded nanotube reinforced composite rectangular plates. Compos. Struct. 155, 29–44 (2016) Sharma, A., Kumar, A., Susheel, C., Kumar, R.: Smart damping of functionally graded nanotube reinforced composite rectangular plates. Compos. Struct. 155, 29–44 (2016)
37.
go back to reference Sahoo, S., Ray, M.: Analysis of smart damping of laminated composite beams using mesh free method. Int. J. Mech. Mater. Des. 14(3), 359–374 (2018) Sahoo, S., Ray, M.: Analysis of smart damping of laminated composite beams using mesh free method. Int. J. Mech. Mater. Des. 14(3), 359–374 (2018)
38.
go back to reference Liu, G.R., Trung, N.: Smoothed Finite Element Methods. CRC Press, Boco Raton (2016) Liu, G.R., Trung, N.: Smoothed Finite Element Methods. CRC Press, Boco Raton (2016)
39.
go back to reference Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., Thai-Hoang, C.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of reissner-mindlin plates. Int. J. Numer. Methods Eng. 91(7), 705–741 (2012)MathSciNet Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., Thai-Hoang, C.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of reissner-mindlin plates. Int. J. Numer. Methods Eng. 91(7), 705–741 (2012)MathSciNet
40.
go back to reference Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int. J. Mech. Sci. 74, 32–45 (2013) Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int. J. Mech. Sci. 74, 32–45 (2013)
41.
go back to reference Nguyen, S.N., Truong, T.T., Cho, M., Trung, N.T.: A cell-based smoothed finite element formulation for viscoelastic laminated composite plates considering hygrothermal effects. J. Compos. Mater. 55(14), 1967–1978 (2021)ADS Nguyen, S.N., Truong, T.T., Cho, M., Trung, N.T.: A cell-based smoothed finite element formulation for viscoelastic laminated composite plates considering hygrothermal effects. J. Compos. Mater. 55(14), 1967–1978 (2021)ADS
42.
go back to reference Ly, D.K., Truong, T.T., Nguyen, S.N., Nguyen-Thoi, T.: A smoothed finite element formulation using zig-zag theory for hybrid damping vibration control of laminated functionally graded carbon nanotube reinforced composite plates. Eng. Anal. Bound. Elem. 144, 456–474 (2022)MathSciNet Ly, D.K., Truong, T.T., Nguyen, S.N., Nguyen-Thoi, T.: A smoothed finite element formulation using zig-zag theory for hybrid damping vibration control of laminated functionally graded carbon nanotube reinforced composite plates. Eng. Anal. Bound. Elem. 144, 456–474 (2022)MathSciNet
43.
go back to reference Guo, H., Zhuang, X., Rabczuk, T.: A deep collocation method for the bending analysis of kirchhoff plate (2021). arXiv preprint arXiv:2102.02617 Guo, H., Zhuang, X., Rabczuk, T.: A deep collocation method for the bending analysis of kirchhoff plate (2021). arXiv preprint arXiv:​2102.​02617
44.
go back to reference Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)ADSMathSciNet Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)ADSMathSciNet
45.
go back to reference Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)ADSMathSciNet Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)ADSMathSciNet
46.
go back to reference Fernández Casanova, C., et al.: Analysis of Composite Shells: Isogeometric Modelling and Damage identification. Universidad de Granada (2014) Fernández Casanova, C., et al.: Analysis of Composite Shells: Isogeometric Modelling and Damage identification. Universidad de Granada (2014)
47.
go back to reference Singh, S., Singh, I.V.: Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material. Eng. Fract. Mech. 247, 107640 (2021) Singh, S., Singh, I.V.: Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material. Eng. Fract. Mech. 247, 107640 (2021)
48.
go back to reference Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H., Lee, J.: Nurbs-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. Comput. Methods Appl. Mech. Eng. 347, 983–1003 (2019)ADSMathSciNet Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H., Lee, J.: Nurbs-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. Comput. Methods Appl. Mech. Eng. 347, 983–1003 (2019)ADSMathSciNet
49.
go back to reference Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non-Linear Mech. 76, 190–202 (2015)ADS Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non-Linear Mech. 76, 190–202 (2015)ADS
50.
go back to reference Phung-Van, P., Tran, L.V., Ferreira, A., Nguyen-Xuan, H., Abdel-Wahab, M.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. 87(2), 879–894 (2017) Phung-Van, P., Tran, L.V., Ferreira, A., Nguyen-Xuan, H., Abdel-Wahab, M.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. 87(2), 879–894 (2017)
51.
go back to reference Shafei, E., Faroughi, S., Rabczuk, T.: Nonlinear transient vibration of viscoelastic plates: a nurbs-based isogeometric hsdt approach. Comput. Math. Appl. 84, 1–15 (2021)MathSciNet Shafei, E., Faroughi, S., Rabczuk, T.: Nonlinear transient vibration of viscoelastic plates: a nurbs-based isogeometric hsdt approach. Comput. Math. Appl. 84, 1–15 (2021)MathSciNet
52.
go back to reference Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boco Raton (2003) Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boco Raton (2003)
53.
go back to reference Liew, K., Pan, Z., Zhang, L.: An overview of Layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos. Struct. 216, 240–259 (2019) Liew, K., Pan, Z., Zhang, L.: An overview of Layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos. Struct. 216, 240–259 (2019)
54.
go back to reference Murakami, H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53(3), 661–666 (1986)ADS Murakami, H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53(3), 661–666 (1986)ADS
55.
go back to reference Carrera, E.: On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells. Comput. Struct. 82(7–8), 541–554 (2004) Carrera, E.: On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells. Comput. Struct. 82(7–8), 541–554 (2004)
56.
go back to reference Tessler, A., DiSciuva, M., Gherlone, M.: Refined zigzag theory for laminated composite and sandwich plates (2009) Tessler, A., DiSciuva, M., Gherlone, M.: Refined zigzag theory for laminated composite and sandwich plates (2009)
57.
go back to reference Nguyen, S.N., Lee, J., Cho, M.: A triangular finite element using laplace transform for viscoelastic laminated composite plates based on efficient higher-order zigzag theory. Compos. Struct. 155, 223–244 (2016) Nguyen, S.N., Lee, J., Cho, M.: A triangular finite element using laplace transform for viscoelastic laminated composite plates based on efficient higher-order zigzag theory. Compos. Struct. 155, 223–244 (2016)
58.
go back to reference Nguyen, S.N., Lee, J., Cho, M.: Viscoelastic behavior of naghdi shell model based on efficient higher-order zig-zag theory. Compos. Struct. 164, 304–315 (2017) Nguyen, S.N., Lee, J., Cho, M.: Viscoelastic behavior of naghdi shell model based on efficient higher-order zig-zag theory. Compos. Struct. 164, 304–315 (2017)
59.
go back to reference Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018) Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018)
60.
go back to reference Nguyen, V.P., Anitescu, C., Bordas, S.P., Rabczuk, T.: Isogeometric analysis: an overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)MathSciNet Nguyen, V.P., Anitescu, C., Bordas, S.P., Rabczuk, T.: Isogeometric analysis: an overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)MathSciNet
61.
go back to reference Lim, Y.H., Varadan, V.V., Varadan, V.K.: Closed loop finite-element modeling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11(1), 89 (2002)ADS Lim, Y.H., Varadan, V.V., Varadan, V.K.: Closed loop finite-element modeling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11(1), 89 (2002)ADS
62.
go back to reference Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W., Liu, M.: Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Compos. Struct. 204, 114–130 (2018) Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W., Liu, M.: Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Compos. Struct. 204, 114–130 (2018)
Metadata
Title
An electromechanical coupling isogeometric approach using zig-zag function for modeling and smart damping control of multilayer PFG-GPRC plates
Authors
T. Nguyen-Thoi
Duy-Khuong Ly
S. Kattimani
Chanachai Thongchom
Publication date
16-11-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 2/2024
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03785-y

Other articles of this Issue 2/2024

Acta Mechanica 2/2024 Go to the issue

Premium Partners