Skip to main content
Top
Published in: Calcolo 4/2017

01-12-2017

An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions

Authors: Wei Shi, Kai Liu, Xinyuan Wu, Changying Liu

Published in: Calcolo | Issue 4/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a novel energy-preserving numerical scheme for nonlinear Hamiltonian wave equations with Neumann boundary conditions is proposed and analyzed based on the blend of spatial discretization by finite element method (FEM) and time discretization by Average Vector Field (AVF) approach. We first use the finite element discretization in space, which leads to a system of Hamiltonian ODEs whose Hamiltonian can be thought of as the semi-discrete energy of the original continuous system. The stability of the semi-discrete finite element scheme is analyzed. We then apply the AVF approach to the Hamiltonian ODEs to yield a new and efficient fully discrete scheme, which can preserve exactly (machine precision) the semi-discrete energy. The blend of FEM and AVF approach derives a new and efficient numerical scheme for nonlinear Hamiltonian wave equations. The numerical results on a single-soliton problem and a sine-Gordon equation are presented to demonstrate the remarkable energy-preserving property of the proposed numerical scheme.
Literature
1.
go back to reference Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)MathSciNetCrossRefMATH Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)MathSciNetCrossRefMATH
2.
3.
go back to reference Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRefMATH Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRefMATH
4.
go back to reference Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH
5.
go back to reference Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRefMATH Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRefMATH
6.
go back to reference Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRefMATH Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRefMATH
7.
go back to reference Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)MathSciNetCrossRefMATH Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)MathSciNetCrossRefMATH
8.
go back to reference Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)MathSciNetCrossRefMATH Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)MathSciNetCrossRefMATH
9.
10.
go back to reference Budd, C.J., Piggot, M.D.: Geometric Integration and Its Applications, Handbook of Numerical Analysis, vol. XI. North-Holland, Amsterdam (2003) Budd, C.J., Piggot, M.D.: Geometric Integration and Its Applications, Handbook of Numerical Analysis, vol. XI. North-Holland, Amsterdam (2003)
11.
go back to reference Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH
12.
go back to reference Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194, 425–459 (2006)MathSciNetCrossRefMATH Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194, 425–459 (2006)MathSciNetCrossRefMATH
13.
go back to reference Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH
14.
go back to reference Chabassier, J., Joly, P.: Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199, 2779–2795 (2010)MathSciNetCrossRefMATH Chabassier, J., Joly, P.: Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199, 2779–2795 (2010)MathSciNetCrossRefMATH
15.
go back to reference Schiesser, W.: The numerical methods of liness: integration of partial differential equation. Academic Press, San Diego (1991)MATH Schiesser, W.: The numerical methods of liness: integration of partial differential equation. Academic Press, San Diego (1991)MATH
16.
17.
go back to reference Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Math. Appl. B 12, 1287–1296 (1986)MathSciNetMATH Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Math. Appl. B 12, 1287–1296 (1986)MathSciNetMATH
18.
go back to reference McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH
19.
20.
21.
go back to reference Hairer, E., McLachlan, R.I., Skeel, R.D.: On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43, 631–644 (2009)MathSciNetCrossRefMATH Hairer, E., McLachlan, R.I., Skeel, R.D.: On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43, 631–644 (2009)MathSciNetCrossRefMATH
22.
go back to reference McLachlan, R.I., Quispel, G.R.W., Tse, P.S.P.: Linearization-preserving selfadjoint and symplectic integrators. BIT Numer. Math. 49, 177–197 (2009)CrossRefMATH McLachlan, R.I., Quispel, G.R.W., Tse, P.S.P.: Linearization-preserving selfadjoint and symplectic integrators. BIT Numer. Math. 49, 177–197 (2009)CrossRefMATH
23.
go back to reference Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRefMATH Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRefMATH
24.
go back to reference Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A Math. Theor. 46(16520), 3 (2013)MathSciNetMATH Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A Math. Theor. 46(16520), 3 (2013)MathSciNetMATH
25.
go back to reference Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)MathSciNetCrossRefMATH Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)MathSciNetCrossRefMATH
26.
go back to reference Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)MathSciNetCrossRefMATH Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)MathSciNetCrossRefMATH
27.
go back to reference Wang, B., Iserles, A., Wu, X.: Arbitrary order trigonometric Fourier collocation methods for second-order ODEs. Found. Comput. Math. 16, 151–181 (2016)MathSciNetCrossRefMATH Wang, B., Iserles, A., Wu, X.: Arbitrary order trigonometric Fourier collocation methods for second-order ODEs. Found. Comput. Math. 16, 151–181 (2016)MathSciNetCrossRefMATH
28.
go back to reference Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)CrossRefMATH Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)CrossRefMATH
29.
go back to reference Butcher, J.C.: Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)CrossRefMATH Butcher, J.C.: Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)CrossRefMATH
30.
go back to reference Lambert, J.D., Watson, I.A.: Symmetric multistip methods for periodic initial value problems. J. Inst. Math. Appl. 18(189–20), 2 (1976) Lambert, J.D., Watson, I.A.: Symmetric multistip methods for periodic initial value problems. J. Inst. Math. Appl. 18(189–20), 2 (1976)
31.
go back to reference Dehghan, M., Mohebbi, A., Asgari, Z.: Fourth-order compact solution of the nonlinear Klein–Gordon equation. Numer. Algor. 52, 523–540 (2009)MathSciNetCrossRefMATH Dehghan, M., Mohebbi, A., Asgari, Z.: Fourth-order compact solution of the nonlinear Klein–Gordon equation. Numer. Algor. 52, 523–540 (2009)MathSciNetCrossRefMATH
32.
go back to reference Bratsos, A.G.: A numerical method for the one-dimentional sine-Gordon equation. Numer. Mehods Partial Differ. Equ. 24(833–84), 4 (2008) Bratsos, A.G.: A numerical method for the one-dimentional sine-Gordon equation. Numer. Mehods Partial Differ. Equ. 24(833–84), 4 (2008)
33.
go back to reference Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)MathSciNetCrossRefMATH Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)MathSciNetCrossRefMATH
Metadata
Title
An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions
Authors
Wei Shi
Kai Liu
Xinyuan Wu
Changying Liu
Publication date
01-12-2017
Publisher
Springer Milan
Published in
Calcolo / Issue 4/2017
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0232-5

Other articles of this Issue 4/2017

Calcolo 4/2017 Go to the issue

Premium Partner