Skip to main content
Top
Published in: Computational Mechanics 5/2020

31-01-2020 | Original Paper

An enriched finite volume formulation for the simulation of ductile material failure under shock loading

Authors: Marie Gorecki, Guillaume Peillex, Laurianne Pillon, Nicolas Moës

Published in: Computational Mechanics | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method is proposed to model failure under shock loading. Finite Volume schemes are known to be efficient to take into account the density variations in the shock regions. The proposed method, called eXtended Finite Volume (XFV), is able to model failure in a finite volume framework. The material degradation is modeled using a cohesive zone model to dissipate the amount of energy required to create new surfaces. The XFV method allows to locate the cohesive surface inside elements and to introduce a displacement jump inside the cracked cells without remeshing, in an explicit dynamics finite volume framework. Attention is paid to the mass lumping and scheme stability. The XFV method is validated to simulate a plate impact experiment. It shows the ability to reproduce spall patterns and free surface velocities. However, numerical stability issues still need to be fixed before being able to compare the simulation with experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
\(\sigma _{N0}\) depictes the cohesive traction projected on the cohesive surface, as a force per unit surface.
 
2
Cases A and E are limit cases respectively approaching a linear cohesive law and a Dugdale model. However, in the implementation of the cohesive model in Hesione code, it is not possible to choose \(\delta _1 = 0 \) or \(\delta _1 = \delta _{Nc}\). These values have therefore been approximated to get \(\delta _1 \approx 0 \) and \( \delta _1 \approx \delta _{Nc} \).
 
3
Once again, cases A and E are limit cases corresponding respectively to a linear cohesive law and a Dugdale model.
 
Literature
1.
go back to reference Roy G (2003) Vers une modélisation approfondie de l’endommagement ductile dynamique: investigation expérimentale d’une nuance de tantale et développements théoriques. PhD thesis, Poitiers Roy G (2003) Vers une modélisation approfondie de l’endommagement ductile dynamique: investigation expérimentale d’une nuance de tantale et développements théoriques. PhD thesis, Poitiers
2.
go back to reference Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52 Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52
3.
go back to reference Johnson JN (1981) Dynamic fracture and spallation in ductile solids. J Appl Phys 52(4):2812–2825 Johnson JN (1981) Dynamic fracture and spallation in ductile solids. J Appl Phys 52(4):2812–2825
4.
go back to reference Czarnota C, Jacques N, Mercier S, Molinari A (2008) Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J Mech Phys Solids 56(4):1624–1650 Czarnota C, Jacques N, Mercier S, Molinari A (2008) Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J Mech Phys Solids 56(4):1624–1650
5.
go back to reference Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part 1—yield criteria and flow rules for porous ductile media. J Eng Mater Technol Trans ASME 99(1):2–15 Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part 1—yield criteria and flow rules for porous ductile media. J Eng Mater Technol Trans ASME 99(1):2–15
6.
go back to reference Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169 Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169
7.
go back to reference Bargellini R, Besson J, Lorentz E, Michel-Ponnelle S (2009) A non-local finite element based on volumetric strain gradient: application to ductile fracture. Comput Mater Sci 45(3):762–767 Bargellini R, Besson J, Lorentz E, Michel-Ponnelle S (2009) A non-local finite element based on volumetric strain gradient: application to ductile fracture. Comput Mater Sci 45(3):762–767
8.
go back to reference Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040MathSciNetMATH Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040MathSciNetMATH
9.
go back to reference Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104 Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104
10.
go back to reference Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3):525–531MATH Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3):525–531MATH
11.
go back to reference Gullerud AS, Gao X, Dodds RH Jr, Haj-Ali R (2000) Simulation of ductile crack growth using computational cells: numerical aspects. Eng Fract Mech 66(1):65–92 Gullerud AS, Gao X, Dodds RH Jr, Haj-Ali R (2000) Simulation of ductile crack growth using computational cells: numerical aspects. Eng Fract Mech 66(1):65–92
12.
go back to reference Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86(3):358–380MathSciNetMATH Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86(3):358–380MathSciNetMATH
13.
go back to reference Stershic AJ, Dolbow JE, Moës N (2017) The thick level-set model for dynamic fragmentation. Eng Fract Mech 172:39–60 Stershic AJ, Dolbow JE, Moës N (2017) The thick level-set model for dynamic fragmentation. Eng Fract Mech 172:39–60
14.
go back to reference Zhang H, Li L, An X, Ma G (2010) Numerical analysis of 2-d crack propagation problems using the numerical manifold method. Eng Anal Bound Elem 34(1):41–50MathSciNetMATH Zhang H, Li L, An X, Ma G (2010) Numerical analysis of 2-d crack propagation problems using the numerical manifold method. Eng Anal Bound Elem 34(1):41–50MathSciNetMATH
15.
go back to reference Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346MATH Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346MATH
16.
go back to reference Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150MathSciNetMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150MathSciNetMATH
17.
go back to reference Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33):3523–3540MathSciNetMATH Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33):3523–3540MathSciNetMATH
18.
go back to reference Areias PM, Belytschko T (2006) A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics” by a. hansbo and p. hansbo [comput. methods appl. mech. engrg. 193 (2004) 3523–3540]. Comput Methods Appl Mech Eng 195(9):1275–1276MATH Areias PM, Belytschko T (2006) A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics” by a. hansbo and p. hansbo [comput. methods appl. mech. engrg. 193 (2004) 3523–3540]. Comput Methods Appl Mech Eng 195(9):1275–1276MATH
19.
go back to reference Rozycki P, Moës N, Bechet E, Dubois C (2008) X-fem explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries. Comput Methods Appl Mech Eng 197(5):349–363MATH Rozycki P, Moës N, Bechet E, Dubois C (2008) X-fem explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries. Comput Methods Appl Mech Eng 197(5):349–363MATH
20.
go back to reference Song J-H, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893MATH Song J-H, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893MATH
21.
go back to reference Menouillard T, Rethore J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (x-fem). Int J Numer Methods Eng 68(9):911–939MathSciNetMATH Menouillard T, Rethore J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (x-fem). Int J Numer Methods Eng 68(9):911–939MathSciNetMATH
22.
go back to reference Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput Methods Appl Mech Eng 198(30):2297–2317MATH Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput Methods Appl Mech Eng 198(30):2297–2317MATH
23.
go back to reference Menouillard T, Rethore J, Moes N, Combescure A, Bung H (2008) Mass lumping strategies for x-fem explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74(3):447–474MathSciNetMATH Menouillard T, Rethore J, Moes N, Combescure A, Bung H (2008) Mass lumping strategies for x-fem explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74(3):447–474MathSciNetMATH
24.
go back to reference VonNeumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21(3):232–237MathSciNetMATH VonNeumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21(3):232–237MathSciNetMATH
25.
go back to reference Wilkins M L (1963) Calculation of elastic-plastic flow. Technical report, California Univ Livermore Radiation Lab Wilkins M L (1963) Calculation of elastic-plastic flow. Technical report, California Univ Livermore Radiation Lab
26.
go back to reference Flament J, Perlat J-P (2011) Méthode de couplage euler-lagrange pour la dynamique rapide. In 10e colloque national en calcul des structures Flament J, Perlat J-P (2011) Méthode de couplage euler-lagrange pour la dynamique rapide. In 10e colloque national en calcul des structures
27.
go back to reference Longère P, Dragon A (2013) Description of shear failure in ductile metals via back stress concept linked to damage-microporosity softening. Eng Fract Mech 98:92–108 Longère P, Dragon A (2013) Description of shear failure in ductile metals via back stress concept linked to damage-microporosity softening. Eng Fract Mech 98:92–108
28.
go back to reference Desgraz JC, Lascaux P (1976) Stabilite de la discretisation des equations de l’hydrodynamique lagrangienne 2d. Computing Methods in Applied Sciences. Springer, Berlin, pp 510–529 Desgraz JC, Lascaux P (1976) Stabilite de la discretisation des equations de l’hydrodynamique lagrangienne 2d. Computing Methods in Applied Sciences. Springer, Berlin, pp 510–529
29.
go back to reference Grüneisen E (1912) Theorie des festen zustandes einatomiger elemente. Ann Phys 344(12):257–306MATH Grüneisen E (1912) Theorie des festen zustandes einatomiger elemente. Ann Phys 344(12):257–306MATH
30.
go back to reference McQueen RG, Marsh SP, Taylor JW, Fritz JN, Carter WJ (1970) The equation of state of solids from shock wave studies. In: High velocity impact phenomena, vol 293, pp 293–417 McQueen RG, Marsh SP, Taylor JW, Fritz JN, Carter WJ (1970) The equation of state of solids from shock wave studies. In: High velocity impact phenomena, vol 293, pp 293–417
31.
go back to reference Steinberg D, Cochran S, Guinan M (1980) A constitutive model for metals applicable at high-strain rate. J Appl Phys 51(3):1498–1504 Steinberg D, Cochran S, Guinan M (1980) A constitutive model for metals applicable at high-strain rate. J Appl Phys 51(3):1498–1504
32.
go back to reference Wilkins ML (1980) Use of artificial viscosity in multidimensional fluid dynamic calculations. J Comput Phys 36(3):281–303MathSciNetMATH Wilkins ML (1980) Use of artificial viscosity in multidimensional fluid dynamic calculations. J Comput Phys 36(3):281–303MathSciNetMATH
33.
go back to reference Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6):1377–1397MATH Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6):1377–1397MATH
34.
go back to reference Scheider I (2009) Derivation of separation laws for cohesive models in the course of ductile fracture. Eng Fract Mech 76(10):1450–1459 Scheider I (2009) Derivation of separation laws for cohesive models in the course of ductile fracture. Eng Fract Mech 76(10):1450–1459
35.
go back to reference Baranger J, Maitre J-F (1996) Connection between finite volume and mixed finite element methods. ESAIM Math Modell Numer Anal 30(4):445–465MathSciNetMATH Baranger J, Maitre J-F (1996) Connection between finite volume and mixed finite element methods. ESAIM Math Modell Numer Anal 30(4):445–465MathSciNetMATH
36.
go back to reference Chan RK-C (1975) A generalized arbitrary Lagrangian–Eulerian method for incompressible flows with sharp interfaces. J Comput Phys 17(3):311–331MATH Chan RK-C (1975) A generalized arbitrary Lagrangian–Eulerian method for incompressible flows with sharp interfaces. J Comput Phys 17(3):311–331MATH
37.
go back to reference Buy F, Llorca F (2002) Shock wave effects in copper: design of an experimental device for post recovery mechanical testing. In: AIP conference proceedings, vol 620. AIP, pp 319–322 Buy F, Llorca F (2002) Shock wave effects in copper: design of an experimental device for post recovery mechanical testing. In: AIP conference proceedings, vol 620. AIP, pp 319–322
38.
go back to reference Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74MathSciNetMATH Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74MathSciNetMATH
Metadata
Title
An enriched finite volume formulation for the simulation of ductile material failure under shock loading
Authors
Marie Gorecki
Guillaume Peillex
Laurianne Pillon
Nicolas Moës
Publication date
31-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2020
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01818-0

Other articles of this Issue 5/2020

Computational Mechanics 5/2020 Go to the issue