Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

An extended reverse Hardy–Hilbert’s inequality in the whole plane

Authors: Qiang Chen, Bicheng Yang

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using weight coefficients, a complex integral formula, and Hermite–Hadamard’s inequality, we give an extended reverse Hardy–Hilbert’s inequality in the whole plane with multiparameters and a best possible constant factor. Equivalent forms and a few particular cases are considered.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

If \(p>1,\frac{1}{p}+\frac{1}{q}=1\), \(a_{m},b_{n}\geq 0\), \(0<\sum_{m=1}^{\infty }a_{m}^{p}<\infty \), \(0<\sum_{n=1}^{\infty }b_{n}^{q}<\infty \), then we have the following Hardy–Hilbert inequality:
$$ \sum_{n=1}^{\infty }\sum _{m=1}^{\infty }\frac{a_{m}b_{n}}{m+n}< \frac{ \pi }{\sin (\frac{\pi }{p})}\Biggl( \sum_{m=1}^{\infty }a_{m}^{p} \Biggr)^{ \frac{1}{p}}\Biggl(\sum_{n=1}^{\infty }b_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(1)
with the best possible constant factor \(\frac{\pi }{\sin (\pi /p)}\) [1]. A more accurate form of (1) with the same best possible constant factor was given in [2, Theorem 323]:
$$ \sum_{n=1}^{\infty }\sum _{m=1}^{\infty }\frac{a_{m}b_{n}}{m+n-1}< \frac{ \pi }{\sin (\frac{\pi }{p})}\Biggl( \sum_{m=1}^{\infty }a_{m}^{p} \Biggr)^{ \frac{1}{p}}\Biggl(\sum_{n=1}^{\infty }b_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(2)
Inequalities (1) and (2) played an important role in analysis and its applications (see [24]).
In 2011, Yang [5] gave the following an extension of (2): If \(0<\lambda_{1}\), \(\lambda_{2}\leq 1\), \(\lambda_{1}+\lambda_{2}=\lambda \), \(a_{m},b_{n}\geq 0\),
$$\begin{aligned}& \Vert a \Vert _{p,\varphi } = \Biggl\{ \sum_{m=1}^{\infty }(m- \alpha )^{p(1-\lambda_{1})-1}a _{m}^{p}\Biggr\} ^{\frac{1}{p}}\in (0, \infty ), \\& \Vert b \Vert _{q,\psi } = \Biggl\{ \sum_{n=1}^{\infty }(n- \alpha )^{q(1-\lambda_{2})-1}b _{n}^{q}\Biggr\} ^{\frac{1}{q}}\in (0, \infty ), \end{aligned}$$
then
$$ \sum_{n=1}^{\infty }\sum _{m=1}^{\infty }\frac{a_{m}b_{n}}{(m+n-2 \alpha )^{\lambda }}< B(\lambda_{1}, \lambda_{2})\Vert a \Vert _{p,\varphi }\Vert b \Vert _{q, \psi } \quad \biggl(0\leq \alpha \leq \frac{1}{2}\biggr), $$
(3)
where the constant factor \(B(\lambda_{1},\lambda_{2})\) is the best possible, and \(B(u,v)\) is the beta function defined as (see [6])
$$ B(u,v):= \int_{0}^{\infty }\frac{1}{(1+t)^{u+v}}t^{u-1}\,dt\quad (u,v>0). $$
(4)
For \(\lambda =1\), \(\lambda_{1}=\frac{1}{q}\), \(\lambda_{2}=\frac{1}{p}\), and \(\alpha =\frac{1}{2}\), (3) reduces to (2). Some other results related to (1)–(3) were provided in [724]. In 2016–17, a few extensions of (1)–(3) with some reverses in the whole plane were obtained in [2527].
In this paper, using weight coefficients, a complex integral formula, and Hermite–Hadamard’s inequality, we give the following extension of the reverse of (1) in the whole plane: If \(0< p<1\) (\(q<0\)), \(\frac{1}{p}+\frac{1}{q}=1\), \(0<\lambda_{1}\), \(\lambda_{2}<1\), \(\lambda_{1}+ \lambda_{2}=\lambda \leq 1\), \(\xi ,\eta \in [ 0,\frac{1}{2}],a _{m},b_{n}\geq 0\),
$$\begin{aligned}& 0< \sum_{\vert m \vert =1}^{\infty }\vert m-\xi \vert ^{p(1-\lambda_{1})-1}a_{m}^{p}< \infty , \\& 0< \sum _{\vert n \vert =1}^{\infty }\vert n-\eta \vert ^{q(1-\lambda_{2})-1}b_{n}^{q}< \infty , \end{aligned}$$
then setting
$$\begin{aligned} \theta_{1}(\lambda_{2},m) &:=\frac{\lambda \sin (\frac{\pi \lambda _{1}}{\lambda })}{\pi } \int_{\frac{\vert m-\xi \vert }{1+\eta }}^{\infty }\frac{u ^{\lambda_{1}-1}}{u^{\lambda }+1}\,du \\ &=O \biggl( \frac{1}{\vert m-\xi \vert ^{\lambda_{2}}} \biggr) \in (0,1),\quad \vert m \vert \in \mathbf{N}, \end{aligned}$$
(5)
we have the following reverse Hilbert-type inequality in the whole plane:
$$\begin{aligned}& \sum_{\vert n \vert =1}^{\infty }\sum _{\vert m \vert =1}^{\infty }\frac{a_{m}b_{n}}{ \vert m-\xi \vert ^{\lambda }+ \vert n-\eta \vert ^{\lambda }} \\& \quad > \frac{2\pi }{\lambda \sin (\frac{\pi \lambda_{1}}{\lambda })} \Biggl[ \sum_{\vert m \vert =1}^{\infty } \bigl(1-\theta_{1}(\lambda_{2},m)\bigr)\vert m-\xi \vert ^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\& \quad \quad {}\times \Biggl[ \sum_{\vert n \vert =1}^{\infty }\vert n- \eta \vert ^{q(1-\lambda_{2})-1}b _{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(6)
Moreover, we prove an extended inequality of (6) with multiparameters and a best possible constant factor. We also consider equivalent forms and a few particular cases.

2 Some lemmas and an example

Lemma 1
Let C be the set of complex numbers, \(\mathbf{C}_{\infty }=\mathbf{C}\cup \{\infty \}\), and let \(z_{k}\in \mathbf{C}\backslash \{z\mid \operatorname{Re}z\geq 0, \operatorname{Im}z=0\}\) (\(k=1,2,\ldots ,n\)) be different points. Suppose that a function \(f(z)\) is analytic in \(\mathbf{C}_{ \infty }\) except for \(z_{i}\) (\(i=1,2,\ldots ,n\)) and that \(z=\infty \) is a zero point of \(f(z)\) of order not less than 1. Then, for \(\alpha \in \mathbf{R}\), we have
$$ \int_{0}^{\infty }f(x)x^{\alpha -1}\,dx= \frac{2\pi i}{1-e^{2\pi \alpha i}}\sum_{k=1}^{n} \operatorname{Re}s\bigl[f(z)z^{\alpha -1},z_{k}\bigr], $$
(7)
where \(0<\operatorname{Im}\ln z=\arg z<2\pi \). In particular, if \(z_{k}\) (\(k=1,\ldots ,n\)) are all poles of order 1, then setting \(\varphi_{k}(z)=(z-z _{k})f(z)\) (\(\varphi_{k}(z_{k})\neq 0\)), we have
$$ \int_{0}^{\infty }f(x)x^{\alpha -1}\,dx= \frac{\pi }{\sin \pi \alpha } \sum_{k=1}^{n}(-z_{k})^{\alpha -1} \varphi_{k}(z_{k}). $$
(8)
Proof
By [28] (p. 118) we have (7). We find
$$\begin{aligned} 1-e^{2\pi \alpha i} &=1-\cos 2\pi \alpha -i\sin 2\pi \alpha \\ &=-2i\sin \pi \alpha (\cos \pi \alpha +i\sin \pi \alpha ) \\ &=-2ie^{i \pi \alpha } \sin \pi \alpha . \end{aligned}$$
In particular, since \(f(z)z^{\alpha -1}=\frac{1}{z-z_{k}}(\varphi_{k}(z)z ^{\alpha -1})\), it is obvious that
$$ \operatorname{Re}s\bigl[f(z)z^{\alpha -1},-z_{k} \bigr]=z_{k}{}^{\alpha -1}\varphi_{k}(z _{k})=-e^{i\pi \alpha }(-z_{k})^{\alpha -1} \varphi_{k}(z_{k}). $$
Then by (7) we obtain (8). □
Example 1
For \(s\in \mathbf{N=\{}1,2,\ldots \}\), \(c_{s}\geq \cdots \geq c_{1}>0, \varepsilon >0\), \(\lambda_{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=s \lambda \), we define the function
$$ k_{s\lambda }(x,y)=\frac{1}{\prod_{k=1}^{s}(x^{\lambda }+c_{k}y^{ \lambda })} $$
and constants \(\widetilde{c}_{k}=c_{k}+(k-1)\varepsilon \) (\(k=1,\ldots ,s\)).
Since \(\widetilde{c}_{s}>\cdots >\widetilde{c}_{1}=c_{1}>0\), by (8) we find
$$\begin{aligned} \widetilde{k}_{s}(\lambda_{1}) &:=\int_{0}^{\infty }\frac{1}{\prod_{k=1}^{s}(t^{\lambda }+\widetilde{c}_{k})}t^{\lambda_{1}-1}\,dt \\ &\overset{u=t^{\lambda /s}}{=}\frac{1}{\lambda } \int_{0}^{\infty }\frac{1}{ \prod_{k=1}^{s}(u+\widetilde{c}_{k})}u^{\frac{\lambda_{1}}{\lambda }-1}\,du \\ &=\frac{\pi }{\lambda \sin (\frac{\pi \lambda_{1}}{\lambda })}\sum_{k=1}^{s} \widetilde{c}_{k}^{\frac{\lambda_{1}}{\lambda }-1} \prod_{j=1(j\neq k)}^{s} \frac{1}{\widetilde{c}_{j}-\widetilde{c}_{k}} \in \mathbf{R}_{+}. \end{aligned}$$
Since
$$\begin{aligned} 0 &< \widetilde{k}_{s}(\lambda_{1})=\frac{1}{\lambda } \int_{0}^{ \infty }\prod_{k=1}^{s} \frac{1}{u+\widetilde{c}_{k}}u^{\frac{\lambda _{1}}{\lambda }-1}\,du \\ &\leq \frac{1}{\lambda } \int_{0}^{\infty }\frac{1}{(u+c_{1})^{s}}u ^{\frac{\lambda_{1}}{\lambda }-1}\,du \\ &\overset{u=c_{1}v}{=}\frac{1}{\lambda c_{1}^{\lambda_{2}/\lambda }} \int_{0}^{\infty }\frac{1}{(v+1)^{s}}v^{\frac{\lambda_{1}}{\lambda }-1}\,dv \\ &=\frac{1}{\lambda c_{1}^{\lambda_{2}/\lambda }}B\biggl(\frac{\lambda_{1}}{ \lambda },\frac{\lambda_{2}}{\lambda }\biggr)\in \mathbf{R}_{+}, \end{aligned}$$
it follows that
$$\begin{aligned} k_{s}(\lambda_{1}) &=\lim_{\varepsilon \rightarrow 0^{+}} \widetilde{k}_{s}(\lambda_{1}) \\ &=\frac{\pi }{\lambda \sin (\frac{\pi \lambda_{1}}{\lambda })}\sum_{k=1}^{s}c_{k}^{\frac{\lambda_{1}}{\lambda }-1} \prod_{j=1(j\neq k)} ^{s}\frac{1}{c_{j}-c_{k}}\in \mathbf{R}_{+}. \end{aligned}$$
(9)
In particular, for \(s=1\), we obtain
$$ k_{1}(\lambda_{1})=\frac{1}{\lambda } \int_{0}^{\infty }\frac{u^{( \lambda_{1}/\lambda )-1}}{u+c_{1}}\,du= \frac{\pi }{\lambda c_{1}^{ \lambda_{2}/\lambda }\sin (\frac{\pi \lambda_{1}}{\lambda })}; $$
(10)
for \(c_{s}=\cdots =c_{1}\), we have
$$ k(\lambda_{1}):= \int_{0}^{\infty }\frac{t^{\lambda_{1}-1}}{(t^{\lambda }+c_{1})^{s}}\,dt= \frac{1}{\lambda c_{1}^{\lambda_{2}/\lambda }}B\biggl(\frac{ \lambda_{1}}{\lambda },\frac{\lambda_{2}}{\lambda }\biggr). $$
(11)
We further assume that \(s\in \mathbf{N}\), \(c_{s}\geq \cdots \geq c_{1}>0\), \(\alpha ,\beta \in (0,\pi )\), \(\xi ,\eta \in [ 0,\frac{1}{2}]\), \(0<\lambda_{1},\lambda_{2},\lambda \leq 1,\lambda_{1}+\lambda_{2}=s \lambda \) (\(s\geq 2\)); \(0<\lambda_{1}\), \(\lambda_{2}<1\), \(0<\lambda_{1}+\lambda_{2}=\lambda \leq 1\) (\(s=1\)). For \(\vert t \vert >\frac{1}{2}\), we set
$$ A_{\zeta ,\theta }(t):=\vert t-\zeta \vert +(t-\zeta )\cos \theta $$
\(((\zeta ,\theta ,t)=(\xi ,\alpha ,x)\mbox{ or }(\eta ,\beta ,y))\) and
$$\begin{aligned} k(x,y) &:=k_{s\lambda }\bigl(A_{\xi ,\alpha }(x),A_{\eta ,\beta }(y)\bigr) \\ &=\frac{1}{\prod_{k=1}^{s}(A_{\xi ,\alpha }^{\lambda }(x)+c_{k}A_{ \eta ,\beta }^{\lambda }(y))}. \end{aligned}$$
Definition 1
Define the following weight coefficients:
$$\begin{aligned}& \omega (\lambda_{2},m) : =\sum_{\vert n \vert =1}^{\infty }k(m,n) \frac{A_{ \xi ,\alpha }^{\lambda_{1}}(m)}{A_{\eta ,\beta }^{1-\lambda_{2}}(n)},\quad \vert m \vert \in \mathbf{N}, \end{aligned}$$
(12)
$$\begin{aligned}& \varpi (\lambda_{1},n) : =\sum_{\vert m \vert =1}^{\infty }k(m,n) \frac{A_{ \eta ,\beta }^{\lambda_{2}}(n)}{A_{\xi ,\alpha }^{1-\lambda_{1}}(m)},\quad \vert n \vert \in \mathbf{N}, \end{aligned}$$
(13)
where \(\sum_{\vert j \vert =1}^{\infty }\cdots =\sum_{j=-1}^{-\infty }+\cdots +\sum_{j=1}^{\infty }\cdots\) (\(j=m,n\)).
Lemma 2
With regards to the above agreement, replacing \(0<\lambda_{1}\leq 1\) (\(0<\lambda_{1}<1\)) by \(\lambda_{1}>0\) and setting
$$ h_{\beta }(\lambda_{1}):=2k_{s}( \lambda_{1})\csc^{2}\beta , $$
we still have
$$ h_{\beta }(\lambda_{1}) \bigl(1-\theta (\lambda_{2},m) \bigr)< \omega (\lambda_{2},m)< h _{\beta }(\lambda_{1}),\quad \vert m \vert \in \mathbf{N,} $$
(14)
where
$$\begin{aligned} \theta (\lambda_{2},m) &:=\frac{1}{k_{s}(\lambda_{1})} \int_{\frac{A_{\xi ,\alpha }(m)}{(1+\eta )(1+\cos \beta )}}^{\infty }\frac{u ^{\lambda_{1}-1}}{\prod_{k=1}^{s}(u^{\lambda }+c_{k})}\,du \\ &=O \biggl( \frac{1}{A_{\xi ,\alpha }^{\lambda_{2}}(m)} \biggr) \in (0,1),\quad \vert m \vert \in \mathbf{N}. \end{aligned}$$
(15)
Proof
For \(\vert x \vert >\frac{1}{2}\), we set
$$\begin{aligned}& k^{(1)}(x,y) : =\frac{1}{\prod_{k=1}^{s}\{A_{\xi ,\alpha }^{\lambda }(x)+c_{k}[(y-\eta )(\cos \beta -1)]^{\lambda }\}}, \\& \quad y < -\frac{1}{2}, \\& k^{(2)}(x,y) : =\frac{1}{\prod_{k=1}^{s}\{A_{\xi ,\alpha }^{\lambda }(x)+c_{k}[(y-\eta )(1+\cos \beta )]^{\lambda }\}}, \\& \quad y > \frac{1}{2}, \end{aligned}$$
wherefrom, for \(y>\frac{1}{2}\),
$$ k^{(1)}(x,-y)=\frac{1}{\prod_{k=1}^{s}\{A_{\xi ,\alpha }^{\lambda }(x)+c _{k}[(y+\eta )(1-\cos \beta )]^{\lambda }\}}. $$
We find
$$\begin{aligned}& \omega (\lambda_{2},m)=\sum_{n=-1}^{-\infty }k^{(1)}(m,n) \frac{A_{ \xi ,\alpha }^{\lambda_{1}}(m)}{[(n-\eta )(\cos \beta -1)]^{1-\lambda _{2}}} \\& \hphantom{\omega (\lambda_{2},m)=}{}+\sum_{n=1}^{\infty }k^{(2)}(m,n) \frac{A_{\xi ,\alpha }^{\lambda _{1}}(m)}{[(n-\eta )(1+\cos \beta )]^{1-\lambda_{2}}} \\& \hphantom{\omega (\lambda_{2},m)}{} = \frac{A_{\xi ,\alpha }^{\lambda_{1}}(m)}{(1-\cos \beta )^{1-\lambda _{2}}}\sum_{n=1}^{\infty } \frac{k^{(1)}(m,-n)}{(n+\eta )^{1-\lambda _{2}}} \\& \hphantom{\omega (\lambda_{2},m)=}{} +\frac{A_{\xi ,\alpha }^{\lambda_{1}}(m)}{(1+\cos \beta )^{1-\lambda _{2}}}\sum_{n=1}^{\infty } \frac{k^{(2)}(m,n)}{(n-\eta )^{1-\lambda _{2}}}. \end{aligned}$$
(16)
 □
It is evident that, for fixed \(m\in \mathbf{N}\), \(0<\lambda_{2}\leq 1\), \(0< \lambda \leq 1\), both \(\frac{k^{(1)}(m,-y)}{(y+\eta )^{1-\lambda_{2}}}\) and \(\frac{k^{(2)}(m,y)}{(y- \eta )^{1-\lambda_{2}}}\) are strictly decreasing and strictly convex with respect to \(y\in (\frac{1}{2},\infty )\) and satisfy
$$\begin{aligned}& \frac{k^{(i)}(m,(-1)^{i}y)}{[y-(-1)^{i}\eta ]^{1-\lambda_{2}}}>0, \\& \frac{d}{dy}\frac{k^{(i)}(m,(-1)^{i}y)}{[y-(-1)^{i}\eta ]^{1-\lambda _{2}}}< 0 \end{aligned}$$
and
$$ \frac{d^{2}}{dy^{2}}\frac{k^{(i)}(m,(-1)^{i}y)}{[y-(-1)^{i}\eta ]^{1- \lambda_{2}}}>0\quad (i=1,2). $$
By Hermite–Hadamard’s inequality (see [29]) we find
$$\begin{aligned} \omega (\lambda_{2},m) < &\frac{A_{\xi ,\alpha }^{\lambda_{1}}(m)}{(1- \cos \beta )^{1-\lambda_{2}}} \int_{\frac{1}{2}}^{\infty }\frac{k^{(1)}(m,-y)}{(y+ \eta )^{1-\lambda_{2}}}\,dy \\ &{}+\frac{A_{\xi ,\alpha }^{\lambda_{1}}(m)}{(1+\cos \beta )^{1- \lambda_{2}}} \int_{\frac{1}{2}}^{\infty }\frac{k^{(2)}(m,y)}{(y- \eta )^{1-\lambda_{2}}}\,dy. \end{aligned}$$
Setting \(u=\frac{A_{\xi ,\alpha }(m)}{(y+\eta )(1-\cos \beta )}\) (\(\frac{A_{\xi ,\alpha }(m)}{(y-\eta )(1+\cos \beta )}\)) in the first (second) integral, by simplification we find
$$\begin{aligned} \omega (\lambda_{2},m) &< \biggl(\frac{1}{1-\cos \beta }+ \frac{1}{1+\cos \beta }\biggr) \int_{0}^{\infty }\frac{u^{\lambda_{1}-1}}{\prod_{k=1}^{s}(u ^{\lambda }+c_{k})}\,du \\ &=2k_{s}(\lambda_{1})\csc^{2}\beta =h_{\beta }(\lambda_{1}). \end{aligned}$$
Since both \(\frac{k^{(1)}(m,-y)}{(y+\eta )^{1-\lambda_{2}}}\) and \(\frac{k^{(2)}(m,y)}{(y-\eta )^{1-\lambda_{2}}}\) are strictly decreasing, we still have
$$\begin{aligned} \omega (\lambda_{2},m) &>\frac{A_{\xi ,\alpha }^{\lambda_{1}}(m)}{(1- \cos \beta )^{1-\lambda_{2}}} \int_{1}^{\infty }\frac{k^{(1)}(m,-y)}{(y+ \eta )^{1-\lambda_{2}}}\,dy \\ &\quad {}+\frac{A_{\xi ,\alpha }^{\lambda_{1}}(m)}{(1+\cos \beta )^{1- \lambda_{2}}} \int_{1}^{\infty }\frac{k^{(2)}(m,y)}{(y-\eta )^{1- \lambda_{2}}}\,dy \\ &=\frac{1}{1-\cos \beta } \int_{0}^{\frac{A_{\xi ,\alpha }(m)}{(1+ \eta )(1-\cos \beta )}}\frac{u^{\lambda_{1}-1}\,du}{\prod_{k=1}^{s}(u ^{\lambda }+c_{k})} \\ &\quad {}+\frac{1}{1+\cos \beta } \int_{0}^{\frac{A_{\xi ,\alpha }(m)}{(1- \eta )(1+\cos \beta )}}\frac{u^{\lambda_{1}-1}\,du}{\prod_{k=1}^{s}(u ^{\lambda }+c_{k})} \\ &\geq 2\csc^{2}\beta \int_{0}^{\frac{A_{\xi ,\alpha }(m)}{(1+\eta )(1+ \cos \beta )}}\frac{u^{\lambda_{1}-1}}{\prod_{k=1}^{s}(u^{\lambda }+c _{k})}\,du \\ &=h_{\beta }(\lambda_{2}) \bigl(1-\theta ( \lambda_{2},m)\bigr)>0, \end{aligned}$$
where \(\theta (\lambda_{2},m)(<1)\) is indicated by (15). We obtain
$$\begin{aligned} 0 &< \theta (\lambda_{2},m)< \frac{1}{k_{s}(\lambda_{1})} \int_{\frac{A_{\xi ,\alpha }(m)}{(1+\eta )(1+\cos \beta )}}^{\infty }\frac{u ^{\lambda_{1}-1}}{u^{s\lambda }}\,du \\ &=\frac{1}{k_{s}(\lambda_{1})} \int_{\frac{A_{\xi ,\alpha }(m)}{(1+\eta )(1+\cos \beta )}}^{\infty }u ^{-\lambda_{2}-1}\,du \\ &=\frac{1}{\lambda_{2}k_{s}(\lambda_{1})} \biggl[ \frac{(1+\eta )(1+ \cos \beta )}{A_{\xi ,\alpha }(m)} \biggr] ^{\lambda_{2}}. \end{aligned}$$
Then we have (14) and estimate (15).  □
In the same way, we have
Lemma 3
With regards to the above agreement, replacing \(0<\lambda_{2}\leq 1\) (\(0<\lambda_{2}<1\)) by \(\lambda_{2}>0\), for
$$ h_{\alpha }(\lambda_{1})=2k_{s}( \lambda_{1})\csc^{2}\alpha , $$
we still have
$$ h_{\alpha }(\lambda_{1}) \bigl(1-\vartheta ( \lambda_{1},n)\bigr)< \varpi (\lambda_{1},n)< h _{\alpha }(\lambda_{1}),\quad \vert n \vert \in \mathbf{N,} $$
(17)
where
$$\begin{aligned} \vartheta (\lambda_{1},n) &:=\frac{1}{k_{s}(\lambda_{1})} \int_{\frac{A_{\eta ,\beta }(n)}{(1+\xi )(1+\cos \alpha)}}^{\infty }\frac{u^{\lambda_{2}-1}}{\prod_{k=1}^{s}(u^{\lambda }+c_{k})}\,du \\ &=O \biggl( \frac{1}{A_{\eta ,\beta }^{\lambda_{1}}(n)} \biggr) \in (0,1),\quad \vert n \vert \in \mathbf{N}. \end{aligned}$$
(18)
Lemma 4
If \(\zeta \in {}[ 0,\frac{1}{2}],\theta \in (0,\pi )\), \((\zeta , \theta )=(\xi ,\alpha )\) (or \((\eta ,\beta )\)), then, for \(\rho >0\),
$$\begin{aligned} H_{\rho }(\zeta ,\theta )&:=\sum_{\vert k \vert =1}^{\infty } \frac{1}{A_{\zeta , \theta }^{1+\rho }(k)}=\frac{1+o(1)}{\rho } \\ &\quad {}\times \biggl[ \frac{1}{(1+\cos \theta )^{1+\rho }}+\frac{1}{(1-\cos \theta )^{1+\rho }} \biggr] \quad \bigl(\rho \rightarrow 0^{+}\bigr). \end{aligned}$$
(19)
Proof
We find
$$\begin{aligned} H_{\rho }(\zeta ,\theta ) &=\sum_{k=-1}^{-\infty } \frac{1}{[(k- \zeta )(\cos \theta -1)]^{1+\rho }} \\ &\quad {}+\sum_{k=1}^{\infty }\frac{1}{[(k-\zeta )(\cos \theta +1)]^{1+ \rho }} \\ &=\frac{1}{(1-\cos \theta )^{1+\rho }}\sum_{k=1}^{\infty } \frac{1}{(k+ \zeta )^{1+\rho }} \\ &\quad {}+\frac{1}{(1+\cos \theta )^{1+\rho }}\sum_{k=1}^{\infty } \frac{1}{(k- \zeta )^{1+\rho }}. \end{aligned}$$
For \(a=\frac{1}{(1-\zeta )^{1+\rho }}>0\), by Hermite–Hadamard’s inequality we have
$$\begin{aligned} H_{\rho }(\zeta ,\theta ) &\leq \biggl[ \frac{1}{(1-\cos \theta )^{1+ \rho }}+ \frac{1}{(1+\cos \theta )^{1+\rho }} \biggr] \\ &\quad {}\times \Biggl[ a+\sum_{k=2}^{\infty } \frac{1}{(k-\zeta )^{1+\rho }} \Biggr] \\ &< \biggl[ \frac{1}{(1-\cos \theta )^{1+\rho }}+\frac{1}{(1+\cos \theta )^{1+\rho }} \biggr] \\ &\quad {}\times \biggl[ a+ \int_{\frac{3}{2}}^{\infty }\frac{1}{(y-\zeta )^{1+ \rho }}\,dy \biggr] \\ &=\frac{a\rho +(\frac{3}{2}-\zeta )^{-\rho }}{\rho } \biggl[ \frac{1}{(1- \cos \theta )^{1+\rho }}+\frac{1}{(1+\cos \theta )^{1+\rho }} \biggr] . \end{aligned}$$
We still obtain
$$\begin{aligned}& H_{\rho }(\zeta ,\theta )\geq \biggl[ \frac{1}{(1-\cos \theta )^{1+ \rho }}+ \frac{1}{(1+\cos \theta )^{1+\rho }} \biggr] \sum_{k=1}^{\infty }\frac{1}{(k+\zeta )^{1+\rho }} \\& \hphantom{ H_{\rho }(\zeta ,\theta )}{}> \biggl[ \frac{1}{(1-\cos \theta )^{1+\rho }}+\frac{1}{(1+\cos \theta )^{1+\rho }} \biggr] \int_{1}^{\infty }\frac{dy}{(y+\zeta )^{1+ \rho }} \\& \hphantom{ H_{\rho }(\zeta ,\theta )}{}= \frac{(1+\zeta )^{-\rho }}{\rho } \biggl[ \frac{1}{(1-\cos \theta )^{1+ \rho }}+\frac{1}{(1+\cos \theta )^{1+\rho }} \biggr] . \end{aligned}$$
Hence we have (19). □

3 Main results and some particular cases

Theorem 5
Suppose that \(0< p<1\) (\(q<0\)), \(\frac{1}{p}+\frac{1}{q}=1\),
$$ K_{\alpha ,\beta }(\lambda_{1}):=h_{\beta }^{\frac{1}{p}}( \lambda_{1})h _{\alpha }^{\frac{1}{q}}(\lambda_{1})=2k_{s}( \lambda_{1}) \csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha , $$
(20)
\(a_{m},b_{n}\geq 0\) \((\vert m\vert ,\vert n\vert \in \mathbf{N})\), and
$$\begin{aligned}& 0< \sum_{\vert m \vert =1}^{\infty }A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m} ^{p}< \infty , \\& 0< \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda _{2})-1}(n)b_{n}^{q}< \infty . \end{aligned}$$
We have the following reverse equivalent inequalities:
$$\begin{aligned}& I:=\sum_{\vert n \vert =1}^{\infty }\sum _{\vert m \vert =1}^{\infty }\frac{1}{\prod_{k=1} ^{s}(A_{\xi ,\alpha }^{\lambda }(m)+c_{k}A_{\eta ,\beta }^{\lambda }(n))}a _{m}b_{n} \\& \hphantom{I}{}>K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum _{\vert m \vert =1}^{\infty }\bigl(1- \theta (\lambda_{2},m) \bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m} ^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b _{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(21)
$$\begin{aligned}& J : = \Biggl\{ \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{p\lambda_{2}-1}(n) \Biggl[ \sum_{\vert m \vert =1}^{\infty }\frac{a_{m}}{\prod_{k=1}^{s}(A_{\xi , \alpha }^{\lambda }(m)+c_{k}A_{\eta ,\beta }^{\lambda }(n))} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\& \hphantom{J}{}> K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum _{\vert m \vert =1}^{\infty }\bigl(1- \theta (\lambda_{2},m) \bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m} ^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned}$$
(22)
$$\begin{aligned}& L : = \Biggl\{ \sum_{\vert m\vert =1}^{\infty }\frac{A_{ \xi ,\alpha }^{q\lambda_{1}-1}(m)}{(1-\theta (\lambda_{2},m))^{q-1}} \Biggl[ \sum_{\vert n\vert =1}^{\infty } \frac{1}{ \prod_{k=1}^{s}(A_{\xi ,\alpha }^{\lambda }(m)+c_{k}A_{\eta ,\beta } ^{\lambda }(n))}b_{n} \Biggr] ^{q} \Biggr\} ^{\frac{1}{q}} \\& \hphantom{L}{}>K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum _{\vert n\vert =1} ^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(23)
In particular, for \(s=c_{1}=1\), \(\alpha =\beta =\frac{\pi }{2}\) (\(0<\lambda_{1}\), \(\lambda_{2}<1\), \(\lambda_{1}+\lambda_{2}=\lambda \leq 1\)), (21) reduces to (6); and (22) and (23) reduce to the equivalent forms of (6) as follows:
$$\begin{aligned}& \Biggl\{ \sum_{\vert n \vert =1}^{\infty }\vert n-\eta \vert ^{p\lambda_{2}-1} \Biggl( \sum_{\vert m \vert =1}^{\infty } \frac{a_{m}}{\vert m-\xi \vert ^{\lambda }+\vert n-\eta \vert ^{ \lambda }} \Biggr) ^{p} \Biggr\} ^{\frac{1}{p}} \\& \quad > \frac{2\pi }{\lambda \sin (\frac{\pi \lambda_{1}}{\lambda })} \Biggl[ \sum_{\vert m \vert =1}^{\infty } \bigl(1-\theta_{1}(\lambda_{2},m)\bigr)\vert m-\xi \vert ^{p(1- \lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned}$$
(24)
$$\begin{aligned}& \Biggl[ \sum_{\vert m\vert =1}^{\infty } \frac{\vert m-\xi \vert ^{q \lambda_{1}-1}}{(1-\theta_{1}(\lambda_{2},m))^{q-1}} \Biggl( \sum_{\vert n\vert =1}^{\infty } \frac{b_{n}}{\vert m-\xi \vert ^{ \lambda }+\vert n-\eta \vert ^{\lambda }} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\& \quad > \frac{2\pi }{\lambda \sin (\frac{\pi \lambda_{1}}{\lambda })} \Biggl[ \sum_{\vert n\vert =1}^{\infty } \vert n-\eta \vert ^{q(1-\lambda_{2})-1}b _{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(25)
Proof
By the reverse Hölder inequality with weight (see [29]) and (12) we find
$$\begin{aligned}& \Biggl( \sum_{\vert m \vert =1}^{\infty }k(m,n)a_{m} \Biggr) ^{p} \\& \quad = \Biggl[ \sum_{\vert m \vert =1}^{\infty }k(m,n) \frac{A_{\xi ,\alpha }^{(1- \lambda_{1})/q}(m)a_{m}}{A_{\eta ,\beta }^{(1-\lambda_{2})/p}(n)}\frac{A _{\eta ,\beta }^{(1-\lambda_{2})/p}(n)}{A_{\xi ,\alpha }^{(1-\lambda _{1})/q}(m)} \Biggr] ^{p} \\& \quad \geq \sum_{\vert m \vert =1}^{\infty }h(m,n) \frac{A_{\xi ,\alpha }^{(1-\lambda_{1})p/q}(m)}{A _{\eta ,\beta }^{1-\lambda_{2}}(n)}a_{m}^{p} \Biggl[ \sum _{\vert m \vert =1}^{ \infty }k(m,n)\frac{A_{\eta ,\beta }^{(1-\lambda_{2})q/p}(n)}{A_{ \xi ,\alpha }^{1-\lambda_{1}}(m)} \Biggr] ^{p-1} \\& \quad = \frac{(\varpi (\lambda_{1},n))^{p-1}}{A_{\eta ,\beta }^{p\lambda_{2}-1}(n)} \sum_{\vert m \vert =1}^{\infty }k(m,n) \frac{A_{\xi ,\alpha }^{(1-\lambda_{1})p/q}(m)}{A _{\eta ,\beta }^{1-\lambda_{2}}(n)}a_{m}^{p}. \end{aligned}$$
By (17), in view of \(p-1<0\), we have
$$\begin{aligned} J >&h_{\alpha }^{\frac{1}{q}}(\lambda_{1}) \Biggl[ \sum _{\vert n \vert =1}^{ \infty }\sum _{\vert m \vert =1}^{\infty }k(m,n)\frac{A_{\xi ,\alpha }^{(1-\lambda _{1})p/q}(m)}{A_{\eta ,\beta }^{1-\lambda_{2}}(n)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&h_{\alpha }^{\frac{1}{q}}(\lambda_{1}) \Biggl[ \sum _{\vert m \vert =1}^{\infty }\sum_{\vert n \vert =1}^{\infty }k(m,n) \frac{A_{\xi ,\alpha }^{(1-\lambda_{1})p/q}(m)}{A _{\eta ,\beta }^{1-\lambda_{2}}(n)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&h_{\alpha }^{\frac{1}{q}}(\lambda_{1}) \Biggl[ \sum _{\vert m \vert =1}^{\infty }\omega (\lambda_{2},m)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m} ^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(26)
Then by (14) we have (22).
By Hölder’s inequality (see [29]) we have
$$\begin{aligned} I = \sum_{\vert n \vert =1}^{\infty } \Biggl[ A_{\eta ,\beta }^{\lambda_{2}- \frac{1}{p}}(n)\sum_{\vert m \vert =1}^{\infty }k(m,n)a_{m} \Biggr] A_{\eta , \beta }^{\frac{1}{p}-\lambda_{2}}(n)b_{n} \geq J \Biggl[ \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b _{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(27)
Then by (22) we have (21).
On the other hand, assuming that (21) is valid, we set
$$ b_{n}:=A_{\eta ,\beta }^{p\lambda_{2}-1}(n) \Biggl( \sum _{\vert m \vert =1}^{ \infty }k(m,n)a_{m} \Biggr) ^{p-1},\quad \vert n \vert \in \mathbf{N,} $$
and then
$$ J= \Biggl[ \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b _{n}^{q} \Biggr] ^{\frac{1}{p}}. $$
By (26) we find \(J>0\). If \(J=\infty \), then (22) is evidently valid; if \(J<\infty \), then by (21) we have
$$\begin{aligned}& \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b_{n} ^{q} \\& \quad=J^{p}=I >K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum_{\vert m \vert =1}^{\infty }\bigl(1- \theta (\lambda_{2},m)\bigr)A_{ \xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b _{n}^{q} \Biggr] ^{\frac{1}{q}}, \\& J = \Biggl[ \sum_{\vert n \vert =1}^{\infty }A_{\eta ,\beta }^{q(1-\lambda_{2})-1}(n)b _{n}^{q} \Biggr] ^{\frac{1}{p}} > K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum _{\vert m \vert =1}^{\infty }\bigl(1- \theta (\lambda_{2},m) \bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m} ^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned}$$
namely, (22) follows, which is equivalent to (21).
We have proved that (21) is valid. Then we set
$$ a_{m}:= \frac{A_{\xi ,\alpha }^{q\lambda_{1}-1}(m)}{(1-\theta ( \lambda_{2},m))^{q-1}} \Biggl( \sum _{\vert n\vert =1}^{ \infty }k(m,n)b_{n} \Biggr) ^{q-1},\quad \vert m\vert \in \mathbf{N,} $$
and find
$$ L= \Biggl[ \sum_{\vert m\vert =1}^{\infty }\bigl(1-\theta ( \lambda_{2},m)\bigr)A _{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m}^{p} \Biggr] ^{\frac{1}{q}}. $$
If \(L=0\), then (23) is impossible, so that \(L>0\). If \(L=\infty \), then (23) is trivially valid; if \(L<\infty \), then we have
$$\begin{aligned}& \sum_{\vert m\vert =1}^{\infty }\bigl(1-\theta ( \lambda_{2},m)\bigr)A _{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m}^{p} \\& \quad =L^{q}=I>K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum _{\vert m\vert =1} ^{\infty }\bigl(1-\theta (\lambda_{2},m) \bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a _{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{\vert n\vert =1}^{\infty }A_{\eta , \beta }^{q(1-\lambda_{2})-1}(n)b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \\& L = \Biggl[ \sum_{\vert m\vert =1}^{\infty }\bigl(1-\theta ( \lambda_{2},m)\bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m}^{p} \Biggr] ^{\frac{1}{q}} > K_{\alpha ,\beta }(\lambda_{1}) \Biggl[ \sum _{\vert n\vert =1}^{\infty }A_{\eta ,\beta }^{q(1- \lambda_{2})-1}(n)b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
thats is, (23) follows.
On the other-hand, assuming that (23) is valid, using the reverse Hölder inequality, we have
$$\begin{aligned} I =&\sum_{\vert m\vert =1}^{\infty } \biggl[ \frac{A_{ \xi ,\alpha }^{(1/q)-\lambda_{1}}(m)}{(1-\theta (\lambda_{2},m))^{-1/p}}a _{m} \biggr] \\ &\times \Biggl[ \frac{A_{\xi ,\alpha }^{\lambda_{1}-(1/q)}(m)}{(1- \theta (\lambda_{2},m))^{1/p}}\sum_{\vert n\vert =1}^{ \infty }k(m,n)b_{n} \Biggr] \\ \geq & \Biggl[ \sum_{\vert m\vert =1}^{\infty }\bigl(1- \theta ( \lambda_{2},m)\bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m)a_{m}^{p} \Biggr] ^{\frac{1}{p}}L, \end{aligned}$$
(28)
and then by (23) we have (21), which is equivalent to (23).
Therefore, inequalities (21), (22), and (23) are equivalent. □
Theorem 6
With regards to the assumptions of Theorem 5, the constant factor\(K _{\alpha ,\beta }(\lambda_{1})\) in (21), (22), and (23) is the best possible.
Proof
For \(0<\varepsilon <p\lambda_{1}\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon }{p}\) (\(\in (0,1)\)), \(\widetilde{\lambda }_{2}=\lambda_{2}+\frac{\varepsilon }{p}\) (>0), and
$$\begin{aligned}& \widetilde{a}_{m}:=A_{\xi ,\alpha }^{\lambda_{1}-(\varepsilon /p)-1}(m)=A _{\xi ,\alpha }^{\widetilde{\lambda }_{1}-1}(m)\quad \bigl(\vert m\vert \in \mathbf{N}\bigr), \\& \widetilde{b}_{n}:=A_{\eta ,\beta }^{\lambda_{2}-(\varepsilon /q)-1}(n)=A_{\eta ,\beta }^{\widetilde{\lambda }_{2}-\varepsilon -1}(n)\quad \bigl(\vert n\vert \in \mathbf{N}\bigr). \end{aligned}$$
By (19) and (17) we find
$$\begin{aligned}& \widetilde{I}_{1}:= \Biggl[ \sum_{\vert m\vert =1}^{\infty } \bigl(1- \theta (\lambda_{2},m)\bigr)A_{\xi ,\alpha }^{p(1-\lambda_{1})-1}(m) \widetilde{a}_{m}^{p} \Biggr] ^{\frac{1}{p}}\Biggl[ \sum_{\vert n\vert =1}^{\infty }A_{\eta , \beta }^{q(1-\lambda_{2})-1}(n) \widetilde{b}_{n}^{q} \Biggr] ^{ \frac{1}{q}} \\& \hphantom{\widetilde{I}_{1}} = \Biggl[ \sum_{\vert m\vert =1}^{\infty }A_{\xi ,\alpha } ^{-1-\varepsilon }(m)-\sum_{\vert m\vert =1}^{\infty }O\bigl(A _{\xi ,\alpha }^{-1-(\lambda_{2}+\varepsilon )}(m)\bigr) \Biggr] ^{ \frac{1}{p}} \Biggl( \sum _{\vert n\vert =1}^{\infty }A_{ \eta ,\beta }^{-1-\varepsilon }(n) \Biggr) ^{\frac{1}{q}} \\& \hphantom{\widetilde{I}_{1}} =\frac{1}{\varepsilon }\bigl(2\csc^{2}\alpha +o(1)-\varepsilon O(1) \bigr)^{ \frac{1}{p}}\bigl(2\csc^{2}\beta +\widetilde{o}(1) \bigr)^{\frac{1}{q}}\quad \bigl( \varepsilon \rightarrow 0^{+}\bigr), \\& \widetilde{I}:=\sum_{\vert m\vert =1}^{\infty } \sum _{\vert n\vert =1}^{\infty }k(m,n)\widetilde{a}_{m} \widetilde{b}_{n} \\& \hphantom{\widetilde{I}}=\sum_{\vert n\vert =1}^{\infty } \sum_{\vert m\vert =1}^{\infty }k(m,n)A_{\xi ,\alpha }^{ \widetilde{\lambda }_{1}-1}(m)A_{\eta ,\beta }^{\widetilde{\lambda }_{2}-\varepsilon -1}(n) \\& \hphantom{\widetilde{I}} = \sum_{\vert n\vert =1}^{\infty }\varpi ( \widetilde{ \lambda }_{1},n)A_{\eta ,\beta }^{-1-\varepsilon }(n)< h _{\alpha }( \widetilde{\lambda }_{1})\sum_{\vert n\vert =2} ^{\infty }A_{\eta ,\beta }^{-1-\varepsilon }(n) \\& \hphantom{\widetilde{I}} = \frac{1}{\varepsilon }h_{\alpha }\biggl(\lambda_{1}- \frac{\varepsilon }{p}\biggr) \bigl(2\csc^{2}\beta +\widetilde{o}(1) \bigr). \end{aligned}$$
If there exists a positive number \(K\geq K_{\alpha ,\beta }(\lambda _{1})\) such that (21) is still valid when replacing \(K_{\alpha ,\beta }(\lambda_{1})\) by K, then, in particular, we have
$$ \varepsilon \widetilde{I}=\varepsilon \sum_{\vert m\vert =1} ^{\infty }\sum_{\vert n\vert =1}^{\infty }k(m,n) \widetilde{a}_{m}\widetilde{b}_{n}>\varepsilon K \widetilde{I}_{1}. $$
In view of the preceding results, it follows that
$$\begin{aligned}& h_{\alpha }\biggl(\lambda_{1}-\frac{\varepsilon }{p}\biggr) \bigl(2\csc^{2}\beta + \widetilde{o}(1)\bigr) >K\cdot \bigl(2\csc^{2}\alpha +o(1)-\varepsilon O(1) \bigr)^{1/p}\bigl(2\csc^{2} \beta +\widetilde{o}(1) \bigr)^{1/q}, \end{aligned}$$
and then
$$ 4k_{s}(\lambda_{1})\csc^{2}\alpha\csc^{2}\beta \geq 2K\csc^{2/p} \alpha \csc^{2/q}\beta \quad \bigl(\varepsilon \rightarrow 0^{+}\bigr), $$
namely,
$$ K_{\alpha ,\beta }(\lambda_{1})=2k_{s}(\lambda_{1})\csc^{2/p}\beta \csc^{2/q}\alpha \geq K. $$
Hence \(K=K_{\alpha ,\beta }(\lambda_{1})\) is the best possible constant factor in (21).
The constant factor \(K_{\alpha ,\beta }(\lambda_{1})\) in (22) ((23)) is still the best possible. Otherwise, we would reach a contradiction by (27) ((28)) that the constant factor in (21) is not the best possible. □
Remark 1
(i) For \(\xi =\eta =0\) and \(\alpha =\beta =\frac{\pi }{2}\) in (21), setting
$$\begin{aligned} \widetilde{\theta }(\lambda_{2},m) &:=\frac{1}{k_{s}(\lambda_{1})} \int_{\vert m \vert }^{\infty }\frac{u^{\lambda_{1}-1}}{\prod_{k=1}^{s}(u^{ \lambda }+c_{k})}\,du \\ &=O \biggl( \frac{1}{\vert m \vert ^{\lambda_{2}}} \biggr) \in (0,1),\quad \vert m \vert \in \mathbf{N}, \end{aligned}$$
we have the following new reverse inequality with the best possible constant factor \(2k_{s}(\lambda_{1})\):
$$\begin{aligned}& \sum_{\vert n \vert =1}^{\infty }\sum _{\vert m \vert =1}^{\infty }\frac{1}{\prod_{k=1} ^{s}(\vert m \vert ^{\lambda }+c_{k}\vert n \vert ^{\lambda })}a_{m}b_{n} \\& \quad >2k_{s}( \lambda _{1}) \Biggl[ \sum_{\vert m \vert =1}^{\infty }\bigl(1- \widetilde{\theta }(\lambda_{2},m)\bigr)\vert m \vert ^{p(1- \lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum _{\vert n \vert =1}^{ \infty }\vert n \vert ^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(29)
It follows that (21) is an extension of (29).
(ii) If \(a_{-m}=a_{m}\) and \(b_{-n}=b_{n}\) (\(m,n\in \mathbf{N}\)), then for
$$\begin{aligned} \widetilde{\theta }(\lambda_{2},m) =&\frac{1}{k_{s}(\lambda_{1})} \int _{m}^{\infty }\frac{u^{\lambda_{1}-1}}{\prod_{k=1}^{s}(u^{\lambda }+c _{k})}\,du \\ =&O \biggl( \frac{1}{m^{\lambda_{2}}} \biggr) \in (0,1),\quad m\in \mathbf{N}, \end{aligned}$$
(29) reduces to the following reverse Hilbert-type inequality:
$$\begin{aligned}& \sum_{n=1}^{\infty }\sum _{m=1}^{\infty }\frac{1}{\prod_{k=1}^{s}(m ^{\lambda }+c_{k}n^{\lambda })}a_{m}b_{n} \\& \quad > k_{s}(\lambda_{1}) \Biggl[ \sum _{m=1}^{\infty }\bigl(1- \widetilde{\theta }( \lambda_{2},m)\bigr)m^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}b_{n} ^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(30)
(iii) If \(a_{-m}=a_{m}\) and \(b_{-n}=b_{n}\) (\(m,n \in \mathbf{N}\)), then setting
$$\begin{aligned} \theta_{2}(\lambda_{2},m) :=&\frac{\lambda \sin (\frac{\pi \lambda _{1}}{\lambda })}{\pi } \int_{\frac{m-\xi }{1+\eta }}^{\infty }\frac{u ^{\lambda_{1}-1}}{u^{\lambda }+1}\,du \\ =&O \biggl( \frac{1}{(m-\xi )^{\lambda_{2}}} \biggr) \in (0,1),\quad m\in \mathbf{N}, \\ \theta_{3}(\lambda_{2},m) :=&\frac{\lambda \sin (\frac{\pi \lambda _{1}}{\lambda })}{\pi } \int_{\frac{m+\xi }{1+\eta }}^{\infty }\frac{u ^{\lambda_{1}-1}}{u^{\lambda }+1}\,du \\ =&O \biggl( \frac{1}{(m+\xi )^{\lambda_{2}}} \biggr) \in (0,1),\quad m\in \mathbf{N}, \end{aligned}$$
(6) reduces to
$$\begin{aligned}& \sum_{n=1}^{\infty }\sum _{m=1}^{\infty } \biggl[ \frac{1}{(m-\xi )^{ \lambda }+(n-\eta )^{\lambda }}+ \frac{1}{(m-\xi )^{\lambda }+(n+ \eta )^{\lambda }} \\& \quad \quad {}+\frac{1}{(m+\xi )^{\lambda }+(n-\eta )^{\lambda }}+\frac{1}{(m+ \xi )^{\lambda }+(n+\eta )^{\lambda }} \biggr] a_{m}b_{n} \\& \quad > \frac{2\pi }{\lambda \sin (\pi \lambda_{1}/\lambda )} \Biggl\{ \sum_{m=1}^{\infty } \bigl[ \bigl(1-\theta_{2}(\lambda_{2},m)\bigr) (m-\xi )^{p(1- \lambda_{1})-1} \\& \quad \quad {} +\bigl(1-\theta_{3}(\lambda_{2},m) \bigr) (m+\xi )^{p(1-\lambda_{1})-1} \bigr] a _{m}^{p} \Biggr\} ^{\frac{1}{p}} \\& \quad \quad {}\times \Biggl\{ \sum_{n=1}^{\infty } \bigl[ (n- \eta )^{q(1-\lambda_{2})-1}+(n+ \eta )^{q(1-\lambda_{2})-1} \bigr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(31)
In particular, for \(\xi =\eta =0\), \(\lambda =1\), \(\lambda_{1}=\lambda_{2}=\frac{1}{2}\) in (31) (or for \(s=\lambda =c_{1}=1\), \(\lambda_{1}=\lambda_{2}=\frac{1}{2}\) in (30)), setting
$$ \theta (m):=\frac{1}{\pi } \int_{m}^{\infty }\frac{u^{-1/2}}{u+1}\,du=O \biggl( \frac{1}{m^{1/2}} \biggr) \in (0,1),\quad m\in \mathbf{N}, $$
we have the following reverse Hardy–Hilbert inequality with the best possible constant π:
$$\begin{aligned}& \sum_{n=1}^{\infty }\sum _{m=1}^{\infty }\frac{a_{m}b_{n}}{m+n} > \pi \Biggl[ \sum_{m=1}^{\infty }\bigl(1-\theta (m)\bigr)m^{\frac{p}{2}-1}a _{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty }n^{ \frac{q}{2}-1}b_{n}^{q} \Biggr) ^{\frac{1}{q}}. \end{aligned}$$
Hence (21) is an extended reverse Hardy–Hilbert’s inequality in the whole plane.

4 Conclusions

In this paper, using the weight coefficients, a complex integral formula, and Hermite–Hadamard’s inequality, we give an extended reverse Hardy–Hilbert’s inequality in the whole plane with multiparameters and a best possible constant factor (Theorems 5 and 6). We consider equivalent forms and a few particular cases. The technique of real analysis is very important, which is the key to prove the reverse equivalent inequalities with the best possible constant factor. The lemmas and theorems provide an extensive account of this type inequalities.

Acknowledgements

This work is supported by the National Natural Science Foundation (No. 61772140) and Science and Technology Planning Project Item of Guangzhou City (No. 201707010229). We are grateful for this help.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Hardy, G.H.: Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 23(2), 45–46 (1925) Hardy, G.H.: Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 23(2), 45–46 (1925)
2.
go back to reference Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH
3.
go back to reference Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acaremic Publishers, Boston (1991) CrossRefMATH Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acaremic Publishers, Boston (1991) CrossRefMATH
4.
go back to reference Yang, B.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) Yang, B.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
5.
go back to reference Yang, B.: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., The United Arab Emirates (2011) Yang, B.: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., The United Arab Emirates (2011)
6.
go back to reference Wang, Z., Guo, D.: Introduction to Special Functions. Science Press, Beijing (1979) Wang, Z., Guo, D.: Introduction to Special Functions. Science Press, Beijing (1979)
8.
go back to reference Hong, Y.: All-side generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–625 (2001) MATH Hong, Y.: All-side generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–625 (2001) MATH
10.
go back to reference Benyi, A., Oh, C.: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006) MathSciNetMATH Benyi, A., Oh, C.: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006) MathSciNetMATH
11.
go back to reference Kuang, J., Debnath, L.: On Hilbert’s type integral inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95–104 (2007) MATH Kuang, J., Debnath, L.: On Hilbert’s type integral inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95–104 (2007) MATH
12.
go back to reference Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH
13.
go back to reference Azar, L.E.: On some extensions of Hardy–Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546829 (2008) MathSciNetMATH Azar, L.E.: On some extensions of Hardy–Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546829 (2008) MathSciNetMATH
14.
go back to reference Zhong, W.: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008) CrossRefMATH Zhong, W.: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008) CrossRefMATH
15.
go back to reference Jin, J., Debnath, L.: On a Hilbert-type linear series operator and its applications. J. Math. Anal. Appl. 371(2), 691–704 (2010) MathSciNetCrossRefMATH Jin, J., Debnath, L.: On a Hilbert-type linear series operator and its applications. J. Math. Anal. Appl. 371(2), 691–704 (2010) MathSciNetCrossRefMATH
16.
go back to reference Huang, Q.: On a multiple Hilbert-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 309319 (2010) CrossRefMATH Huang, Q.: On a multiple Hilbert-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 309319 (2010) CrossRefMATH
17.
go back to reference Yang, B., Krnić, M.: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223–243 (2011) MathSciNetMATH Yang, B., Krnić, M.: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223–243 (2011) MathSciNetMATH
18.
19.
go back to reference Adiyasuren, V., Batbold, T., Krnić, M.: Half-discrete Hilbert-type inequalities with mean operators, the best constants, and applications. Appl. Math. Comput. 231, 148–159 (2014) MathSciNetMATH Adiyasuren, V., Batbold, T., Krnić, M.: Half-discrete Hilbert-type inequalities with mean operators, the best constants, and applications. Appl. Math. Comput. 231, 148–159 (2014) MathSciNetMATH
21.
go back to reference He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 889–902 (2015) MathSciNetCrossRefMATH He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 889–902 (2015) MathSciNetCrossRefMATH
22.
go back to reference Rassias, M.T., Yang, B.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015) MathSciNetCrossRefMATH Rassias, M.T., Yang, B.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015) MathSciNetCrossRefMATH
23.
go back to reference Shi, Y., Yang, B.: A new Hardy–Hilbert-type inequality with multiparameters and a best possible constant factor. J. Inequal. Appl. 2015, Article ID 380 (2015) MathSciNetCrossRefMATH Shi, Y., Yang, B.: A new Hardy–Hilbert-type inequality with multiparameters and a best possible constant factor. J. Inequal. Appl. 2015, Article ID 380 (2015) MathSciNetCrossRefMATH
24.
go back to reference Adiyasuren, V., Batbold, T., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH Adiyasuren, V., Batbold, T., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH
25.
26.
go back to reference Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH
27.
go back to reference Zhong, Y., Yang, B., Chen, Q.: A more accurate Mulholland-type inequality in the whole plane. J. Inequal. Appl. 2017, 315 (2017) MathSciNetCrossRefMATH Zhong, Y., Yang, B., Chen, Q.: A more accurate Mulholland-type inequality in the whole plane. J. Inequal. Appl. 2017, 315 (2017) MathSciNetCrossRefMATH
28.
go back to reference Pan, Y.L., Wang, H.T., Wang, F.T.: On Complex Functions. Science Press, Beijing (2006) Pan, Y.L., Wang, H.T., Wang, F.T.: On Complex Functions. Science Press, Beijing (2006)
29.
go back to reference Kuang, J.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004) Kuang, J.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004)
Metadata
Title
An extended reverse Hardy–Hilbert’s inequality in the whole plane
Authors
Qiang Chen
Bicheng Yang
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1706-y

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner