Skip to main content
Top
Published in: Designs, Codes and Cryptography 5/2023

10-01-2023

An improved method for predicting truncated multiple recursive generators with unknown parameters

Authors: Han-Bing Yu, Qun-Xiong Zheng, Yi-Jian Liu, Jing-Guo Bi, Yu-Fei Duan, Jing-Wen Xue, You Wu, Yue Cao, Rong Cheng, Lin Wang, Bai-Shun Sun

Published in: Designs, Codes and Cryptography | Issue 5/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multiple recursive generators are an important class of pseudorandom number generators which are widely used in cryptography. Methods to predict the whole sequences by the truncated high-order bits of the sequences are not only a crucial aspect of evaluating the security of pseudorandom number generators but also important concerns in the design of pseudorandom number generators. This paper improves the work of Sun et al. (Des Codes Cryptogr 88:1083–1102, 2020) on the predictability of truncated multiple recursive generators with unknown parameters. Given a few truncated digits of high-order bits output by a multiple recursive generator, we first apply the resultant to recover the modulus, then use the Chinese Remainder Theorem and the idea of recovering p-adic coordinates of the coefficients layer by layer to recover the coefficients, and finally employ Kannan’s embedding technique to recover the initial state. Experimental results show that our new method is superior to that of Sun et al. (2020), no matter in terms of the running time or the number of truncated digits required.
Footnotes
1
In the sixth (2021) National Crypto-Math Challenge, Jing-Hui Wang, Ming-Hao Xu and Xiao-Yue Hu (mentor: Zheng-Fu Lu) from Yunnan University also independently pointed that the modulus m can be recovered by computing the resultants of polynomials in \(I_{m}(\underline{a})\).
 
2
In the sixth (2021) National Crypto-Math Challenge, Jia-Le Fang (mentor: Hua Zhong) from Hangzhou Dianzi University also independently proposed the strategy of balancing each coordinate of the target vector.
 
Literature
1.
go back to reference Ajtai M., Kumar R., Sivakumar D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 601–610. Association for Computing Machinery, New York, NY, USA (2001). Ajtai M., Kumar R., Sivakumar D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 601–610. Association for Computing Machinery, New York, NY, USA (2001).
2.
go back to reference Ajtai M.: Generating random lattices according to the invariant distribution (2006). Draft of March. Ajtai M.: Generating random lattices according to the invariant distribution (2006). Draft of March.
3.
go back to reference Albrecht M.R., Heninger N.: On bounded distance decoding with predicate: Breaking the “lattice barrier" for the hidden number problem. In: Canteaut A., Standaert F. (eds.) Advances in Cryptology - EUROCRYPT 2021, pp. 528–558. Springer, Berlin, Heidelberg (2021).CrossRef Albrecht M.R., Heninger N.: On bounded distance decoding with predicate: Breaking the “lattice barrier" for the hidden number problem. In: Canteaut A., Standaert F. (eds.) Advances in Cryptology - EUROCRYPT 2021, pp. 528–558. Springer, Berlin, Heidelberg (2021).CrossRef
4.
go back to reference Albrecht M.R., Ducas L., Herold G., Kirshanova E., Postlethwaite E.W., Stevens M.: The general sieve kernel and new records in lattice reduction. In: Ishai Y., Rijmen V. (eds.) Advances in Cryptology - EUROCRYPT 2019, pp. 717–746. Springer, Cham (2019).CrossRefMATH Albrecht M.R., Ducas L., Herold G., Kirshanova E., Postlethwaite E.W., Stevens M.: The general sieve kernel and new records in lattice reduction. In: Ishai Y., Rijmen V. (eds.) Advances in Cryptology - EUROCRYPT 2019, pp. 717–746. Springer, Cham (2019).CrossRefMATH
5.
go back to reference Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968).MATH Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968).MATH
6.
go back to reference Boyar J.: Inferring sequences produced by a linear congruential generator missing low-order bits. J. Cryptol. 1(3), 177–184 (1989).MathSciNetCrossRefMATH Boyar J.: Inferring sequences produced by a linear congruential generator missing low-order bits. J. Cryptol. 1(3), 177–184 (1989).MathSciNetCrossRefMATH
8.
go back to reference Chen H.J., Qi W.F.: On the distinctness of maximal length sequences over \(\mathbb{Z} /(pq)\) modulo 2. Finite Fields Appl. 15(2), 23–39 (2009).MathSciNetCrossRefMATH Chen H.J., Qi W.F.: On the distinctness of maximal length sequences over \(\mathbb{Z} /(pq)\) modulo 2. Finite Fields Appl. 15(2), 23–39 (2009).MathSciNetCrossRefMATH
9.
go back to reference Contini S., Shparlinski I.E.: On stern’s attack against secret truncated linear congruential generators. In: Information Security and Privacy, pp. 52–60. Springer, Berlin (2005). Contini S., Shparlinski I.E.: On stern’s attack against secret truncated linear congruential generators. In: Information Security and Privacy, pp. 52–60. Springer, Berlin (2005).
10.
go back to reference Coppersmith D.: Finding a small root of a univariate modular equation. In: Advances in Cryptology – EUROCRYPT’96, pp. 155–165. Springer, Berlin (1996). Coppersmith D.: Finding a small root of a univariate modular equation. In: Advances in Cryptology – EUROCRYPT’96, pp. 155–165. Springer, Berlin (1996).
12.
13.
go back to reference Deng L.: Efficient and portable multiple recursive generators of large order. ACM Trans. Model. Comput. Simul. 15(1), 1–13 (2005).CrossRefMATH Deng L.: Efficient and portable multiple recursive generators of large order. ACM Trans. Model. Comput. Simul. 15(1), 1–13 (2005).CrossRefMATH
14.
go back to reference Deng L., Xu H.Q.: A system of high-dimensional, efficient, long-cycle and portable uniform random number generators. ACM Trans. Model. Comput. Simul. 13(4), 299–309 (2003).CrossRefMATH Deng L., Xu H.Q.: A system of high-dimensional, efficient, long-cycle and portable uniform random number generators. ACM Trans. Model. Comput. Simul. 13(4), 299–309 (2003).CrossRefMATH
15.
go back to reference Deng L., Shiau J.H., Lu H.H., Bowman D.: Secure and fast encryption (safe) with classical random number generators. ACM Trans. Math. Softw. 44(4), 1–17 (2018).MathSciNetCrossRefMATH Deng L., Shiau J.H., Lu H.H., Bowman D.: Secure and fast encryption (safe) with classical random number generators. ACM Trans. Math. Softw. 44(4), 1–17 (2018).MathSciNetCrossRefMATH
17.
go back to reference ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification (2011). ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification (2011).
18.
go back to reference Frieze A.M., Hastad J., Kannan R., Lagarias J.C., Shamir A.: Reconstructing truncated integer variables satisfying linear congruences. SIAM J. Comput. 17(2), 262–280 (1988).MathSciNetCrossRefMATH Frieze A.M., Hastad J., Kannan R., Lagarias J.C., Shamir A.: Reconstructing truncated integer variables satisfying linear congruences. SIAM J. Comput. 17(2), 262–280 (1988).MathSciNetCrossRefMATH
19.
go back to reference Gama N., Nguyen P.Q.: Predicting lattice reduction. In: Smart N. (ed.) Advances in Cryptology - EUROCRYPT 2008, pp. 31–51. Springer, Berlin (2008).CrossRef Gama N., Nguyen P.Q.: Predicting lattice reduction. In: Smart N. (ed.) Advances in Cryptology - EUROCRYPT 2008, pp. 31–51. Springer, Berlin (2008).CrossRef
20.
go back to reference Gomez D., Gutierrez J., Ibeas Á., Sevilla D.: Common factors of resultants modulo \(p\). Bull. Aust. Math. Soc. 79(2), 299–302 (2009).MathSciNetCrossRefMATH Gomez D., Gutierrez J., Ibeas Á., Sevilla D.: Common factors of resultants modulo \(p\). Bull. Aust. Math. Soc. 79(2), 299–302 (2009).MathSciNetCrossRefMATH
21.
go back to reference Hallgren S.: Linear congruential generators over elliptic curves. In: Preprint CS94 -143, Department of Computer Science, Cornegie Mellon University, pp. 1–10 (1994). Hallgren S.: Linear congruential generators over elliptic curves. In: Preprint CS94 -143, Department of Computer Science, Cornegie Mellon University, pp. 1–10 (1994).
22.
go back to reference Hess F., Shparlinski I.E.: On the linear complexity and multidimensional distribution of congruential generators over elliptic curves. Des. Codes Cryptogr. 35(1), 111–117 (2005).MathSciNetCrossRefMATH Hess F., Shparlinski I.E.: On the linear complexity and multidimensional distribution of congruential generators over elliptic curves. Des. Codes Cryptogr. 35(1), 111–117 (2005).MathSciNetCrossRefMATH
23.
go back to reference Huang M.Q.: Analysis and cryptologic evaluation of primitive sequences over an integer residue ring. Doctoral Dissertation of Graduate School of USTC, Academia Sinica (1988). Huang M.Q.: Analysis and cryptologic evaluation of primitive sequences over an integer residue ring. Doctoral Dissertation of Graduate School of USTC, Academia Sinica (1988).
24.
go back to reference Josh A., Virginia V.W.: A refined laser method and faster matrix multiplication. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522–539. Society for Industrial and Applied Mathematics, USA (2021). Josh A., Virginia V.W.: A refined laser method and faster matrix multiplication. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522–539. Society for Industrial and Applied Mathematics, USA (2021).
26.
go back to reference Kannan R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 193–206. Association for Computing Machinery, New York, NY, USA (1983). Kannan R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 193–206. Association for Computing Machinery, New York, NY, USA (1983).
28.
go back to reference Knuth D.E.: Seminumerical algorithms. In: The Art of Computer Programming, vol. 2. Addison-Wesley, Canada (1981). Knuth D.E.: Seminumerical algorithms. In: The Art of Computer Programming, vol. 2. Addison-Wesley, Canada (1981).
30.
go back to reference Kuzmin A.S., Nechaev A.A.: Linear recurring sequences over galois ring. Russ. Math. Surv. 48, 171–172 (1993).CrossRef Kuzmin A.S., Nechaev A.A.: Linear recurring sequences over galois ring. Russ. Math. Surv. 48, 171–172 (1993).CrossRef
31.
go back to reference Kuzmin A.S., Nechaev A.A.: Reconstruction of a linear recurrence of maximal period over a galois ring from its highest coordinate sequence. Discret. Math. Appl. 21(2), 145–178 (2011).MathSciNetCrossRefMATH Kuzmin A.S., Nechaev A.A.: Reconstruction of a linear recurrence of maximal period over a galois ring from its highest coordinate sequence. Discret. Math. Appl. 21(2), 145–178 (2011).MathSciNetCrossRefMATH
32.
go back to reference Kuzmin A.S., Marchalko G.B., Nechaev A.A.: Reconstruction of a linear recurrence over a primary residue ring. Mem. Discret. Math. 12, 155–194 (2009). Kuzmin A.S., Marchalko G.B., Nechaev A.A.: Reconstruction of a linear recurrence over a primary residue ring. Mem. Discret. Math. 12, 155–194 (2009).
33.
go back to reference L’Ecuyer P., Touzin R.: Fast combined multiple recursive generators with multipliers of the form \(a=\pm 2^q\pm 2^r\). In: Proceedings of the 32nd Conference on Winter Simulation, pp. 683–689. Society for Computer Simulation International, San Diego, CA, USA (2000). L’Ecuyer P., Touzin R.: Fast combined multiple recursive generators with multipliers of the form \(a=\pm 2^q\pm 2^r\). In: Proceedings of the 32nd Conference on Winter Simulation, pp. 683–689. Society for Computer Simulation International, San Diego, CA, USA (2000).
34.
go back to reference L’Ecuyer P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47(1), 159–164 (1999).CrossRefMATH L’Ecuyer P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47(1), 159–164 (1999).CrossRefMATH
35.
go back to reference Lehmer D.H.: Mathematical methods in large-scale computing units. Ann. Comput. Lab. Harvard Univ. 26, 141–146 (1951).MathSciNetMATH Lehmer D.H.: Mathematical methods in large-scale computing units. Ann. Comput. Lab. Harvard Univ. 26, 141–146 (1951).MathSciNetMATH
36.
38.
40.
go back to reference Nguyen P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen P.Q., Vallée B. (eds.) The LLL Algorithm, pp. 19–69. Springer, Berlin, Heidelberg (2010).CrossRef Nguyen P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen P.Q., Vallée B. (eds.) The LLL Algorithm, pp. 19–69. Springer, Berlin, Heidelberg (2010).CrossRef
41.
go back to reference Nguyen P.Q., Stehlé D.: LLL on the average. In: Hess F., Pauli S., Pohst M. (eds.) Algorithmic Number Theory, pp. 238–256. Springer, Berlin, Heidelberg (2006).CrossRef Nguyen P.Q., Stehlé D.: LLL on the average. In: Hess F., Pauli S., Pohst M. (eds.) Algorithmic Number Theory, pp. 238–256. Springer, Berlin, Heidelberg (2006).CrossRef
42.
go back to reference Plumstead J.B.: Inferring a sequence generated by a linear congruence. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 153–159. IEEE, Chicago, IL, USA (1982). Plumstead J.B.: Inferring a sequence generated by a linear congruence. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 153–159. IEEE, Chicago, IL, USA (1982).
44.
go back to reference Schnorr C.P., Euchner M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(2), 181–199 (1994).MathSciNetCrossRefMATH Schnorr C.P., Euchner M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(2), 181–199 (1994).MathSciNetCrossRefMATH
46.
go back to reference Stern J.: Secret linear congruential generators are not cryptographically secure. In: Proceedings of the 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp. 421–426. IEEE, Los Angeles (1987). Stern J.: Secret linear congruential generators are not cryptographically secure. In: Proceedings of the 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp. 421–426. IEEE, Los Angeles (1987).
47.
go back to reference Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T.: A method for solving key equation for decoding goppa codes. Inf. Control 27(1), 87–99 (1975).MathSciNetCrossRefMATH Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T.: A method for solving key equation for decoding goppa codes. Inf. Control 27(1), 87–99 (1975).MathSciNetCrossRefMATH
48.
go back to reference Sun H.Y., Zhu X.Y., Zheng Q.X.: Predicting truncated multiple recursive generators with unknown parameters. Des. Codes Cryptogr. 88, 1083–1102 (2020).MathSciNetCrossRefMATH Sun H.Y., Zhu X.Y., Zheng Q.X.: Predicting truncated multiple recursive generators with unknown parameters. Des. Codes Cryptogr. 88, 1083–1102 (2020).MathSciNetCrossRefMATH
49.
go back to reference Von zur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2013). Von zur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2013).
51.
go back to reference William C.B.: Matrices over Commutative Rings. Marcel Dekker, New York (1993).MATH William C.B.: Matrices over Commutative Rings. Marcel Dekker, New York (1993).MATH
52.
go back to reference Yang J.B.: Reconstructing Truncated Sequences Derived from Primitive Sequences over Inter Residue Rings. PLA Information Engineering University, Zhengzhou (2017). Yang J.B.: Reconstructing Truncated Sequences Derived from Primitive Sequences over Inter Residue Rings. PLA Information Engineering University, Zhengzhou (2017).
53.
go back to reference Zhou J.J., Qi W.F.: On some properties of linear recurring sequences over \(\mathbb{Z} /(m)\). Chin. Q. J. Math. 5(1–2), 166–171 (1990). Zhou J.J., Qi W.F.: On some properties of linear recurring sequences over \(\mathbb{Z} /(m)\). Chin. Q. J. Math. 5(1–2), 166–171 (1990).
54.
go back to reference Zhu X.Y.: Some Results on Injective Mappings of Primitive Sequences Modulo Prime Powers. PLA Information Engineering University, Zhengzhou (2004). Zhu X.Y.: Some Results on Injective Mappings of Primitive Sequences Modulo Prime Powers. PLA Information Engineering University, Zhengzhou (2004).
Metadata
Title
An improved method for predicting truncated multiple recursive generators with unknown parameters
Authors
Han-Bing Yu
Qun-Xiong Zheng
Yi-Jian Liu
Jing-Guo Bi
Yu-Fei Duan
Jing-Wen Xue
You Wu
Yue Cao
Rong Cheng
Lin Wang
Bai-Shun Sun
Publication date
10-01-2023
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 5/2023
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-022-01175-4

Other articles of this Issue 5/2023

Designs, Codes and Cryptography 5/2023 Go to the issue

Premium Partner