Skip to main content
Top
Published in: Wireless Personal Communications 2/2023

22-03-2023

An Improved Particle Swarm Optimization Algorithm for UAV Base Station Placement

Authors: Faezeh Pasandideh, Fabricio E. Rodriguez Cesen, Pedro Henrique Morgan Pereira, Christian Esteve Rothenberg, Edison Pignaton de Freitas

Published in: Wireless Personal Communications | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In cellular networks, a set of Base Stations (BSs) might be out of service and failed in the aftermath of natural disasters. One of the promising solutions to fix this situation is to send low altitude drones equipped with a small cellular BS (DBSs) to the target locations. This can provide cellular networks with vital communication links and make available temporary coverage for the users in unexpected circumstances. However, finding the minimum number of DBSs and their optimal locations are highly challenging issues. In this paper, a Mixed-Integer Non-Linear Programming formulation is provided, in which the DBSs’ location and the proper number of DBSs are jointly determined. An improved PSO-based algorithm is proposed to jointly optimize DBSs’ locations and find the minimum number of DBSs. As in the original PSO algorithm, the particles are randomly distributed in the initialization phase and a K-means-based clustering method is employed to generate the positions of the first-generation particles (DBSs). In addition, a custom communication protocol is presented for data exchange between the users’ equipment (UE) and the network controller. The proposed approach is evaluated through four simulation experiments implemented using Mininet-Wifi integrated with CopelliaSim. The acquired results show that the proposed solution based on the integration of PSO and K-means algorithms provides a low packet loss and latency. Moreover, it indicates that most of the users in the considered scenarios are covered by the DBSs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pasandideh, F., da Costa, J. P. J., Kunst, R., Islam, N., Hardjawana, W., & de Freitas, E. P. (2022). A review of flying ad hoc networks: Key characteristics, applications, and wireless technologies. Remote Sensing, 14(18), 4459.CrossRef Pasandideh, F., da Costa, J. P. J., Kunst, R., Islam, N., Hardjawana, W., & de Freitas, E. P. (2022). A review of flying ad hoc networks: Key characteristics, applications, and wireless technologies. Remote Sensing, 14(18), 4459.CrossRef
3.
go back to reference Fahim, A. & Gadallah, Y. (2020). Optimized 3d drone placement and resource allocation for lte-based m2m communications. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring) (pp. 1–5). Fahim, A. & Gadallah, Y. (2020). Optimized 3d drone placement and resource allocation for lte-based m2m communications. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring) (pp. 1–5).
4.
go back to reference Zahedi, M. H., Sobouti, M. J., Mohajerzadeh, A. H., Rezaee, A. A., & Hosseini Seno, S. A. (2020). Fuzzy based efficient drone base stations (DBSS) placement in the 5g cellular network. Iranian Journal of Fuzzy Systems, 17(2), 29–38.MathSciNet Zahedi, M. H., Sobouti, M. J., Mohajerzadeh, A. H., Rezaee, A. A., & Hosseini Seno, S. A. (2020). Fuzzy based efficient drone base stations (DBSS) placement in the 5g cellular network. Iranian Journal of Fuzzy Systems, 17(2), 29–38.MathSciNet
5.
go back to reference Akram, T., Awais, M., Naqvi, R., Ahmed, A., & Naeem, M. (2020). Multicriteria UAV base stations placement for disaster management. IEEE Systems Journal, 14(3), 3475–3482.CrossRef Akram, T., Awais, M., Naqvi, R., Ahmed, A., & Naeem, M. (2020). Multicriteria UAV base stations placement for disaster management. IEEE Systems Journal, 14(3), 3475–3482.CrossRef
7.
go back to reference Cherif, N., Jaafar, W., Yanikomeroglu, H. & Yongacoglu, A. (2020). On the optimal 3d placement of a UAV base station for maximal coverage of UAV users. Cherif, N., Jaafar, W., Yanikomeroglu, H. & Yongacoglu, A. (2020). On the optimal 3d placement of a UAV base station for maximal coverage of UAV users.
8.
go back to reference Chaalal, E., Reynaud, L., & Senouci, S. M. (2020). A social spider optimisation algorithm for 3d unmanned aerial base stations placement. In IFIP Networking Conference (Networking) (pp. 544–548). Chaalal, E., Reynaud, L., & Senouci, S. M. (2020). A social spider optimisation algorithm for 3d unmanned aerial base stations placement. In IFIP Networking Conference (Networking) (pp. 544–548).
9.
go back to reference Tarekegn, G. B., Juang, R.-T., Lin, H.-P., Munaye, Y. Y., Wang, L.-C., & Bitew, M. A. (2022). Deep-reinforcement-learning-based drone base station deployment for wireless communication services. IEEE Internet of Things Journal, 9(21), 21899–21915.CrossRef Tarekegn, G. B., Juang, R.-T., Lin, H.-P., Munaye, Y. Y., Wang, L.-C., & Bitew, M. A. (2022). Deep-reinforcement-learning-based drone base station deployment for wireless communication services. IEEE Internet of Things Journal, 9(21), 21899–21915.CrossRef
10.
go back to reference Wang, L., Zhang, H., Guo, S., & Yuan, D. (2022). Deployment and association of multiple UAVs in UAV-assisted cellular networks with the knowledge of statistical user position. IEEE Transactions on Wireless Communications, 21(8), 6553–6567.CrossRef Wang, L., Zhang, H., Guo, S., & Yuan, D. (2022). Deployment and association of multiple UAVs in UAV-assisted cellular networks with the knowledge of statistical user position. IEEE Transactions on Wireless Communications, 21(8), 6553–6567.CrossRef
11.
go back to reference Dai, Z., Zhang, Y., Zhang, W., Luo, X., & He, Z. (2022). A multi-agent collaborative environment learning method for UAV deployment and resource allocation. IEEE Transactions on Signal and Information Processing over Networks, 8, 120–130.CrossRef Dai, Z., Zhang, Y., Zhang, W., Luo, X., & He, Z. (2022). A multi-agent collaborative environment learning method for UAV deployment and resource allocation. IEEE Transactions on Signal and Information Processing over Networks, 8, 120–130.CrossRef
12.
go back to reference Wu, S., Xu, W., Wang, F., Li, G., & Pan, M. (2022). Distributed federated deep reinforcement learning based trajectory optimization for air-ground cooperative emergency networks. IEEE Transactions on Vehicular Technology, 71(8), 9107–9112.CrossRef Wu, S., Xu, W., Wang, F., Li, G., & Pan, M. (2022). Distributed federated deep reinforcement learning based trajectory optimization for air-ground cooperative emergency networks. IEEE Transactions on Vehicular Technology, 71(8), 9107–9112.CrossRef
13.
go back to reference Zhang, S., & Ansari, N. (2020). 3d drone base station placement and resource allocation with FSO-based backhaul in hotspots. IEEE Transactions on Vehicular Technology, 69(3), 3322–3329.CrossRef Zhang, S., & Ansari, N. (2020). 3d drone base station placement and resource allocation with FSO-based backhaul in hotspots. IEEE Transactions on Vehicular Technology, 69(3), 3322–3329.CrossRef
14.
go back to reference Zhong, X., Huo, Y., Dong, X., & Liang, Z. (2020). Qos-compliant 3-d deployment optimization strategy for UAV base stations. IEEE Systems Journal, 15, 1795–1803.CrossRef Zhong, X., Huo, Y., Dong, X., & Liang, Z. (2020). Qos-compliant 3-d deployment optimization strategy for UAV base stations. IEEE Systems Journal, 15, 1795–1803.CrossRef
15.
go back to reference Vashisht, S., Jain, S., & Mann, R. S. (2019). Software defined UAV-based location aware deployment scheme for optimal wireless coverage. In IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 907–912). Vashisht, S., Jain, S., & Mann, R. S. (2019). Software defined UAV-based location aware deployment scheme for optimal wireless coverage. In IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 907–912).
16.
go back to reference Cicek, C. T., Gultekin, H., Tavli, B., & Yanikomeroglu, H. (2020). Backhaul-aware optimization of UAV base station location and bandwidth allocation for profit maximization. IEEE Access, 8, 154573–154588.CrossRef Cicek, C. T., Gultekin, H., Tavli, B., & Yanikomeroglu, H. (2020). Backhaul-aware optimization of UAV base station location and bandwidth allocation for profit maximization. IEEE Access, 8, 154573–154588.CrossRef
17.
go back to reference Guo, J., Huo, Y., Shi, X., Wu, J., Yu, P., Feng, L. & Li, W. (2019). 3d aerial vehicle base station (UAV-BS) position planning based on deep q-learning for capacity enhancement of users with different QoS requirements. In 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC) (pp. 1508–1512). Guo, J., Huo, Y., Shi, X., Wu, J., Yu, P., Feng, L. & Li, W. (2019). 3d aerial vehicle base station (UAV-BS) position planning based on deep q-learning for capacity enhancement of users with different QoS requirements. In 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC) (pp. 1508–1512).
18.
go back to reference You, J., Jung, S., Seo, J., & Kang, J. (2020). Energy-efficient 3-d placement of an unmanned aerial vehicle base station with antenna tilting. IEEE Communications Letters, 24(6), 1323–1327.CrossRef You, J., Jung, S., Seo, J., & Kang, J. (2020). Energy-efficient 3-d placement of an unmanned aerial vehicle base station with antenna tilting. IEEE Communications Letters, 24(6), 1323–1327.CrossRef
19.
go back to reference Sterbenz, J. P., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265.CrossRefMATH Sterbenz, J. P., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265.CrossRefMATH
20.
go back to reference ur Rahman, S., Kim, G., Cho, Y. & Khan, A. (2017). Deployment of an SDN-based UAV network: Controller placement and tradeoff between control overhead and delay. In 2017 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1290–1292). ur Rahman, S., Kim, G., Cho, Y. & Khan, A. (2017). Deployment of an SDN-based UAV network: Controller placement and tradeoff between control overhead and delay. In 2017 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1290–1292).
22.
go back to reference Pan, C., Yi, J., Yin, C., Yu, J., & Li, X. (2019). Joint 3d UAV placement and resource allocation in software-defined cellular networks with wireless backhaul. IEEE Access, 7, 104279–104293.CrossRef Pan, C., Yi, J., Yin, C., Yu, J., & Li, X. (2019). Joint 3d UAV placement and resource allocation in software-defined cellular networks with wireless backhaul. IEEE Access, 7, 104279–104293.CrossRef
23.
go back to reference Pan, C., Yin, C., Yu, J., & Kiran, N. (2018). 3D UAV placement and resource allocation in software defined cellular networks. In IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2018 (pp. 136–141). Pan, C., Yin, C., Yu, J., & Kiran, N. (2018). 3D UAV placement and resource allocation in software defined cellular networks. In IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2018 (pp. 136–141).
26.
go back to reference Secinti, G., Darian, P. B., Canberk, B., & Chowdhury, K. R. (2018). SDNs in the sky: Robust end-to-end connectivity for aerial vehicular networks. IEEE Communications Magazine, 56(1), 16–21.CrossRef Secinti, G., Darian, P. B., Canberk, B., & Chowdhury, K. R. (2018). SDNs in the sky: Robust end-to-end connectivity for aerial vehicular networks. IEEE Communications Magazine, 56(1), 16–21.CrossRef
27.
go back to reference Liu, W., Niu, G., Cao, Q., Pun, M. O., & Chen, J. (2020). Particle swarm optimization for interference-limited unmanned aerial vehicle-assisted networks. IEEE Access, 8, 174 342-174 352.CrossRef Liu, W., Niu, G., Cao, Q., Pun, M. O., & Chen, J. (2020). Particle swarm optimization for interference-limited unmanned aerial vehicle-assisted networks. IEEE Access, 8, 174 342-174 352.CrossRef
28.
go back to reference Alfaia, R. D., de Freitas, Souto A. V., Cardoso, E. H. S., Araújo, J. P. L. D., & Francês, C. R. L. (2022). Resource management in 5G networks assisted by UAV base stations: Machine learning for overloaded Macrocell prediction based on users’ temporal and spatial flow. Drones, 6(6), 145.CrossRef Alfaia, R. D., de Freitas, Souto A. V., Cardoso, E. H. S., Araújo, J. P. L. D., & Francês, C. R. L. (2022). Resource management in 5G networks assisted by UAV base stations: Machine learning for overloaded Macrocell prediction based on users’ temporal and spatial flow. Drones, 6(6), 145.CrossRef
29.
go back to reference Dapper e Silva, T., Emygdio de Melo, C. F., Cumino, P., Rosário, D., Cerqueira, E., & Pignaton de Freitas, E. (2019). STFANET: SDN-based topology management for flying ad hoc network. IEEE Access, 7, 173 499-173 514.CrossRef Dapper e Silva, T., Emygdio de Melo, C. F., Cumino, P., Rosário, D., Cerqueira, E., & Pignaton de Freitas, E. (2019). STFANET: SDN-based topology management for flying ad hoc network. IEEE Access, 7, 173 499-173 514.CrossRef
30.
go back to reference Kim, D., & Lee, J. (2018). Integrated topology management in flying ad hoc networks: Topology construction and adjustment. IEEE Access, 6, 61 196-61 211.CrossRef Kim, D., & Lee, J. (2018). Integrated topology management in flying ad hoc networks: Topology construction and adjustment. IEEE Access, 6, 61 196-61 211.CrossRef
32.
go back to reference Qiu, C., Wei, Z., Yuan, X., Feng, Z., & Zhang, P. (2020). Multiple UAV-mounted base station placement and user association with joint fronthaul and backhaul optimization. IEEE Transactions on Communications, 68(9), 5864–5877.CrossRef Qiu, C., Wei, Z., Yuan, X., Feng, Z., & Zhang, P. (2020). Multiple UAV-mounted base station placement and user association with joint fronthaul and backhaul optimization. IEEE Transactions on Communications, 68(9), 5864–5877.CrossRef
33.
go back to reference Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and Computation, 274, 292–305.MathSciNetCrossRefMATH Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and Computation, 274, 292–305.MathSciNetCrossRefMATH
34.
go back to reference Sree Ranjini, K. S., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63–78. Sree Ranjini, K. S., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63–78.
35.
go back to reference Chegini, S. N., Bagheri, A., & Najafi, F. (2018). PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Applied Soft Computing, 73, 697–726.CrossRef Chegini, S. N., Bagheri, A., & Najafi, F. (2018). PSOSCALF: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Applied Soft Computing, 73, 697–726.CrossRef
36.
go back to reference Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., & Yung, K.-L. (2012). An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection. Computers & Mathematics with Applications, 64(6), 1886–1902.MathSciNetCrossRefMATH Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., & Yung, K.-L. (2012). An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection. Computers & Mathematics with Applications, 64(6), 1886–1902.MathSciNetCrossRefMATH
37.
go back to reference Xiang, T., Liao, X., & Wong, K. (2007). An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Applied Mathematics and Computation, 190(2), 1637–1645.MathSciNetCrossRefMATH Xiang, T., Liao, X., & Wong, K. (2007). An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Applied Mathematics and Computation, 190(2), 1637–1645.MathSciNetCrossRefMATH
38.
go back to reference Krishna, K., & Narasimha Murty, M. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3), 433–439.CrossRef Krishna, K., & Narasimha Murty, M. (1999). Genetic k-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3), 433–439.CrossRef
39.
go back to reference Paul, S., De, S. & Dey, S. (2020). A novel approach of data clustering using an improved particle swarm optimization based k-means clustering algorithm. In 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1–6). Paul, S., De, S. & Dey, S. (2020). A novel approach of data clustering using an improved particle swarm optimization based k-means clustering algorithm. In 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1–6).
Metadata
Title
An Improved Particle Swarm Optimization Algorithm for UAV Base Station Placement
Authors
Faezeh Pasandideh
Fabricio E. Rodriguez Cesen
Pedro Henrique Morgan Pereira
Christian Esteve Rothenberg
Edison Pignaton de Freitas
Publication date
22-03-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10334-2

Other articles of this Issue 2/2023

Wireless Personal Communications 2/2023 Go to the issue