Skip to main content
Top
Published in: Neuroinformatics 1/2014

01-01-2014 | Original Article

An Informatics Approach to Integrating Genetic and Neurological Data in Speech and Language Neuroscience

Authors: Jason W. Bohland, Emma M. Myers, Esther Kim

Published in: Neuroinformatics | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database (http://​neurospeech.​org/​sldb) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
2
The microarray-based data we analyze provide measures of messenger RNA levels, not protein levels.
 
3
Note, however, that other follow-up studies have found relevant associations with DYX1C1 (e.g., Bates et al. 2010; Brkanac et al. 2007; Lim et al. 2011; Wigg et al. 2004; Zhang et al. 2012).
 
4
These data are the same data upon which the gene expression analyses in this paper are based (although note that cross-brain normalization procedures slightly alter expression values as new data are added); it should be noted, however, that these download links will provide data from all donors and for all probes available on the array for a given gene, while we select one probe per gene for analysis (see below).
 
5
Correspondingly, the URL http://​neurospeech.​org/​sldb/​api/​genePhenotype/​?​format=​json provides the same output formatted as JSON.
 
6
We include results P < 0.05, uncorrected, for studies with small numbers of comparisons (e.g., a targeted association study), but – where possible – annotate those that pass corrections for multiple comparisons as described by the authors. Any results from genome wide association studies will be subjected to multiple comparisons-based thresholds of significance.
 
7
Note that Pubmed will automatically explode search terms with synonymous gene symbols as well as synonyms from Medical Subject Headings (MeSH) and Unified Medical Language System (UMLS) ontologies.
 
9
GNPTAB encodes the alpha and beta subunits of GlcNAc-phosphotransferase, while GNPTG encodes the gamma subunit. NAGPA encodes the uncovering enzyme, a catalyst acting in the same biological pathway.
 
11
It should be noted that brain imaging results that are correlated with genotypic variation need not be equivalent to those that are revealed in group studies of patients vs. controls. This could be due to individual variability at the genetic or neural information processing levels within the group.
 
Literature
go back to reference Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271.PubMedCrossRef Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271.PubMedCrossRef
go back to reference Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRef Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRef
go back to reference Alm, P. A. (2004). Stuttering and the basal ganglia circuits: a critical review of possible relations. Journal of Communication Disorders, 37, 325–369.PubMedCrossRef Alm, P. A. (2004). Stuttering and the basal ganglia circuits: a critical review of possible relations. Journal of Communication Disorders, 37, 325–369.PubMedCrossRef
go back to reference Al-Murrani, A., Ashton, F., Aftimos, S., et al. (2012). Amino-terminal microdeletion within the CNTNAP2 gene associated with variable expressivity of speech delay. Case Reports in Genetics, 2012, 172408.PubMedCentralPubMedCrossRef Al-Murrani, A., Ashton, F., Aftimos, S., et al. (2012). Amino-terminal microdeletion within the CNTNAP2 gene associated with variable expressivity of speech delay. Case Reports in Genetics, 2012, 172408.PubMedCentralPubMedCrossRef
go back to reference Anthoni, H., Zucchelli, M., Matsson, H., et al. (2007). A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Human Molecular Genetics, 16, 667–677.PubMedCrossRef Anthoni, H., Zucchelli, M., Matsson, H., et al. (2007). A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Human Molecular Genetics, 16, 667–677.PubMedCrossRef
go back to reference Anthoni, H., Sucheston, L. E., Lewis, B. A., et al. (2012). The aromatase gene CYP19A1: several genetic and functional lines of evidence supporting a role in reading, speech and language. Behavior Genetics, 42, 509–527.PubMedCentralPubMedCrossRef Anthoni, H., Sucheston, L. E., Lewis, B. A., et al. (2012). The aromatase gene CYP19A1: several genetic and functional lines of evidence supporting a role in reading, speech and language. Behavior Genetics, 42, 509–527.PubMedCentralPubMedCrossRef
go back to reference Arbib, M. A., & Bonaiuto, J. J. (2013). BODB. The Brain Operation Database. Neuroinformatics, this issue. Arbib, M. A., & Bonaiuto, J. J. (2013). BODB. The Brain Operation Database. Neuroinformatics, this issue.
go back to reference Arinami, T. (1997). A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Human Molecular Genetics, 6, 577–582.PubMedCrossRef Arinami, T. (1997). A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Human Molecular Genetics, 6, 577–582.PubMedCrossRef
go back to reference Bates, E., Wilson, S. M., Saygin, A. P., et al. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6, 448–450.PubMed Bates, E., Wilson, S. M., Saygin, A. P., et al. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6, 448–450.PubMed
go back to reference Bates, T. C., Lind, P. A., Luciano, M., et al. (2010). Dyslexia and DYX1C1: deficits in reading and spelling associated with a missense mutation. Molecular Psychiatry, 15, 1190–1196.PubMedCrossRef Bates, T. C., Lind, P. A., Luciano, M., et al. (2010). Dyslexia and DYX1C1: deficits in reading and spelling associated with a missense mutation. Molecular Psychiatry, 15, 1190–1196.PubMedCrossRef
go back to reference Bates, T. C., Luciano, M., Medland, S. E., et al. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behavior Genetics, 41, 50–57.PubMedCrossRef Bates, T. C., Luciano, M., Medland, S. E., et al. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behavior Genetics, 41, 50–57.PubMedCrossRef
go back to reference Bellini, G., Bravaccio, C., Calamoneri, F., et al. (2005). No evidence for association between dyslexia and DYX1C1 functional variants in a group of children and adolescents from Southern Italy. Journal of Molecular Neuroscience, 27, 311–314.PubMedCrossRef Bellini, G., Bravaccio, C., Calamoneri, F., et al. (2005). No evidence for association between dyslexia and DYX1C1 functional variants in a group of children and adolescents from Southern Italy. Journal of Molecular Neuroscience, 27, 311–314.PubMedCrossRef
go back to reference Bishop, D. V. M., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: same or different? Psychological Bulletin, 130, 858–886.PubMedCrossRef Bishop, D. V. M., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: same or different? Psychological Bulletin, 130, 858–886.PubMedCrossRef
go back to reference Bohland, J. W., Bokil, H., Allen, C. B., & Mitra, P. P. (2009). The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PloS ONE, 4, e7200.PubMedCentralPubMedCrossRef Bohland, J. W., Bokil, H., Allen, C. B., & Mitra, P. P. (2009). The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PloS ONE, 4, e7200.PubMedCentralPubMedCrossRef
go back to reference Bohland, J. W., Bokil, H., Pathak, S. D., et al. (2010a). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods, 50, 105–112.PubMedCrossRef Bohland, J. W., Bokil, H., Pathak, S. D., et al. (2010a). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods, 50, 105–112.PubMedCrossRef
go back to reference Bohland, J. W., Bullock, D., & Guenther, F. H. (2010b). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22, 1504–1529.PubMedCentralPubMedCrossRef Bohland, J. W., Bullock, D., & Guenther, F. H. (2010b). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22, 1504–1529.PubMedCentralPubMedCrossRef
go back to reference Brkanac, Z., Chapman, N. H., Matsushita, M. M., et al. (2007). Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 556–560.CrossRef Brkanac, Z., Chapman, N. H., Matsushita, M. M., et al. (2007). Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 556–560.CrossRef
go back to reference Civier, O., Bullock, D., Max, L., & Guenther, F. H. (2013). Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain and Language, 126:263–278. Civier, O., Bullock, D., Max, L., & Guenther, F. H. (2013). Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain and Language, 126:263–278.
go back to reference Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.PubMedCrossRef Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.PubMedCrossRef
go back to reference Cope, N., Harold, D., Hill, G., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581–591.PubMedCentralPubMedCrossRef Cope, N., Harold, D., Hill, G., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581–591.PubMedCentralPubMedCrossRef
go back to reference Crosson, B. (1985). Subcortical functions in language: a working model. Brain and Language, 25, 257–292.PubMedCrossRef Crosson, B. (1985). Subcortical functions in language: a working model. Brain and Language, 25, 257–292.PubMedCrossRef
go back to reference Crosson, B., McGregor, K., Gopinath, K. S., et al. (2007). Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychology Review, 17, 157–177.PubMedCentralPubMedCrossRef Crosson, B., McGregor, K., Gopinath, K. S., et al. (2007). Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychology Review, 17, 157–177.PubMedCentralPubMedCrossRef
go back to reference Demonet, J.-F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: functional neuroimaging. Physiological Reviews, 85, 49–95.PubMedCrossRef Demonet, J.-F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: functional neuroimaging. Physiological Reviews, 85, 49–95.PubMedCrossRef
go back to reference Dennis, M. Y., Paracchini, S., Scerri, T. S., et al. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5, e1000436.PubMedCentralPubMedCrossRef Dennis, M. Y., Paracchini, S., Scerri, T. S., et al. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5, e1000436.PubMedCentralPubMedCrossRef
go back to reference Dubertret, C. (2004). The 3′ region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. Schizophrenia Research, 67, 75–85.PubMedCrossRef Dubertret, C. (2004). The 3′ region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. Schizophrenia Research, 67, 75–85.PubMedCrossRef
go back to reference Feuk, L., Kalervo, A., Lipsanen-Nyman, M., et al. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. American Journal of Human Genetics, 79, 965–972.PubMedCentralPubMedCrossRef Feuk, L., Kalervo, A., Lipsanen-Nyman, M., et al. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. American Journal of Human Genetics, 79, 965–972.PubMedCentralPubMedCrossRef
go back to reference Filges, I., Shimojima, K., Okamoto, N., et al. (2011). Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. Journal of Medical Genetics, 48, 117–122.PubMedCrossRef Filges, I., Shimojima, K., Okamoto, N., et al. (2011). Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. Journal of Medical Genetics, 48, 117–122.PubMedCrossRef
go back to reference Fisher, S. E. (2007). Molecular windows into speech and language disorders. Folia Phoniatrica et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 59, 130–140.CrossRef Fisher, S. E. (2007). Molecular windows into speech and language disorders. Folia Phoniatrica et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 59, 130–140.CrossRef
go back to reference Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 7, 9–20.PubMedCrossRef Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 7, 9–20.PubMedCrossRef
go back to reference Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25, 166–177.PubMedCrossRef Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25, 166–177.PubMedCrossRef
go back to reference Fisher, S. E., Lai, C. S. L., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57–80.PubMedCrossRef Fisher, S. E., Lai, C. S. L., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57–80.PubMedCrossRef
go back to reference Francks, C., Paracchini, S., Smith, S. D., et al. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 1046–1058.PubMedCentralPubMedCrossRef Francks, C., Paracchini, S., Smith, S. D., et al. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 1046–1058.PubMedCentralPubMedCrossRef
go back to reference Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 51–72. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 51–72.
go back to reference Frank, M. J., & Fossella, J. A. (2011). Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology, 36, 133–152.PubMedCrossRef Frank, M. J., & Fossella, J. A. (2011). Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology, 36, 133–152.PubMedCrossRef
go back to reference Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6, 78–84.PubMedCrossRef Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6, 78–84.PubMedCrossRef
go back to reference Gardner, D., Akil, H., Ascoli, G., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6, 149–160.PubMedCentralPubMedCrossRef Gardner, D., Akil, H., Ascoli, G., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6, 149–160.PubMedCentralPubMedCrossRef
go back to reference Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52, 862–874.PubMedCentralPubMedCrossRef Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52, 862–874.PubMedCentralPubMedCrossRef
go back to reference Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43–51.PubMedCrossRef Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43–51.PubMedCrossRef
go back to reference Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96, 280–301.PubMedCentralPubMedCrossRef Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96, 280–301.PubMedCentralPubMedCrossRef
go back to reference Gupta, A., Bug, W., Marenco, L., et al. (2008). Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF). Neuroinformatics, 6, 205–217.PubMedCentralPubMedCrossRef Gupta, A., Bug, W., Marenco, L., et al. (2008). Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF). Neuroinformatics, 6, 205–217.PubMedCentralPubMedCrossRef
go back to reference Hamdan, F. F., Daoud, H., Rochefort, D., et al. (2010). De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. American Journal of Human Genetics, 87, 671–678.PubMedCentralPubMedCrossRef Hamdan, F. F., Daoud, H., Rochefort, D., et al. (2010). De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. American Journal of Human Genetics, 87, 671–678.PubMedCentralPubMedCrossRef
go back to reference Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1, e50.PubMedCentralPubMedCrossRef Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1, e50.PubMedCentralPubMedCrossRef
go back to reference Harel, S., Greenstein, Y., Kramer, U., et al. (1996). Clinical characteristics of children referred to a child development center for evaluation of speech, language, and communication disorders. Pediatric Neurology, 15, 305–311.PubMedCrossRef Harel, S., Greenstein, Y., Kramer, U., et al. (1996). Clinical characteristics of children referred to a child development center for evaluation of speech, language, and communication disorders. Pediatric Neurology, 15, 305–311.PubMedCrossRef
go back to reference Harold, D., Paracchini, S., Scerri, T., et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11(1085–91), 1061.CrossRef Harold, D., Paracchini, S., Scerri, T., et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11(1085–91), 1061.CrossRef
go back to reference Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.PubMedCrossRef Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.PubMedCrossRef
go back to reference Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.PubMedCrossRef Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.PubMedCrossRef
go back to reference Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.PubMedCrossRef Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.PubMedCrossRef
go back to reference Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69, 407–422.PubMedCentralPubMedCrossRef Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69, 407–422.PubMedCentralPubMedCrossRef
go back to reference Hirvonen, M., Laakso, A., Någren, K., et al. (2004). C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Molecular psychiatry, 9, 1060–1061. Hirvonen, M., Laakso, A., Någren, K., et al. (2004). C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Molecular psychiatry, 9, 1060–1061.
go back to reference Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101–144.PubMedCrossRef Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101–144.PubMedCrossRef
go back to reference Johnson, M. B., Kawasawa, Y. I., Mason, C. E., et al. (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron, 62, 494–509. Johnson, M. B., Kawasawa, Y. I., Mason, C. E., et al. (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron, 62, 494–509.
go back to reference Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127.PubMedCrossRef Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127.PubMedCrossRef
go back to reference Jones, A. R., Overly, C. C., & Sunkin, S. M. (2009). The Allen Brain Atlas: 5 years and beyond. Nature Reviews Neuroscience, 10, 821–828.PubMedCrossRef Jones, A. R., Overly, C. C., & Sunkin, S. M. (2009). The Allen Brain Atlas: 5 years and beyond. Nature Reviews Neuroscience, 10, 821–828.PubMedCrossRef
go back to reference Kang, C., & Drayna, D. (2011). Genetics of speech and language disorders. Annual Review of Genomics and Human Genetics, 12, 145–164.PubMedCrossRef Kang, C., & Drayna, D. (2011). Genetics of speech and language disorders. Annual Review of Genomics and Human Genetics, 12, 145–164.PubMedCrossRef
go back to reference Kang, C., Riazuddin, S., Mundorff, J., et al. (2010). Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. The New England Journal of Medicine, 362, 677–685.PubMedCentralPubMedCrossRef Kang, C., Riazuddin, S., Mundorff, J., et al. (2010). Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. The New England Journal of Medicine, 362, 677–685.PubMedCentralPubMedCrossRef
go back to reference Kang, C., Domingues, B. S., Sainz, E., et al. (2011a). Evaluation of the association between polymorphisms at the DRD2 locus and stuttering. Journal of Human Genetics, 56, 472–473.PubMedCentralPubMedCrossRef Kang, C., Domingues, B. S., Sainz, E., et al. (2011a). Evaluation of the association between polymorphisms at the DRD2 locus and stuttering. Journal of Human Genetics, 56, 472–473.PubMedCentralPubMedCrossRef
go back to reference Kasabov, N., & Benuskova, L. (2004). Computational neurogenetics. Journal of Computational and Theoretical Neuroscience, 1, 47–61. Kasabov, N., & Benuskova, L. (2004). Computational neurogenetics. Journal of Computational and Theoretical Neuroscience, 1, 47–61.
go back to reference Kos, M., Van den Brink, D., Snijders, T. M., et al. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PloS ONE, 7, e46995.PubMedCentralPubMedCrossRef Kos, M., Van den Brink, D., Snijders, T. M., et al. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PloS ONE, 7, e46995.PubMedCentralPubMedCrossRef
go back to reference Kraft, S. J., & Yairi, E. (2012). Genetic bases of stuttering: the state of the art, 2011. Folia Phoniatrica et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 64, 34–47.CrossRef Kraft, S. J., & Yairi, E. (2012). Genetic bases of stuttering: the state of the art, 2011. Folia Phoniatrica et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 64, 34–47.CrossRef
go back to reference Krug, A., Nieratschker, V., Markov, V., et al. (2010). Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. NeuroImage, 49, 1831–1836.PubMedCrossRef Krug, A., Nieratschker, V., Markov, V., et al. (2010). Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. NeuroImage, 49, 1831–1836.PubMedCrossRef
go back to reference Kwasnicka-Crawford, D. A., Carson, A. R., Roberts, W., et al. (2005). Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics, 86, 182–194.PubMedCrossRef Kwasnicka-Crawford, D. A., Carson, A. R., Roberts, W., et al. (2005). Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics, 86, 182–194.PubMedCrossRef
go back to reference Lai, C. S., Fisher, S. E., Hurst, J. A., et al. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.PubMedCrossRef Lai, C. S., Fisher, S. E., Hurst, J. A., et al. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.PubMedCrossRef
go back to reference Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3, 65–78.PubMedCrossRef Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3, 65–78.PubMedCrossRef
go back to reference Lan, J., Song, M., Pan, C., et al. (2009). Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. Journal of Human Genetics, 54, 457–460.PubMedCrossRef Lan, J., Song, M., Pan, C., et al. (2009). Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. Journal of Human Genetics, 54, 457–460.PubMedCrossRef
go back to reference Langfelder, P., & Horvath, S. (2007). Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology, 1, 54. Langfelder, P., & Horvath, S. (2007). Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology, 1, 54.
go back to reference Lee, A., Kannan, V., & Hillis, A. E. (2006). The contribution of neuroimaging to the study of language and aphasia. Neuropsychology Review, 16, 171–183.PubMedCrossRef Lee, A., Kannan, V., & Hillis, A. E. (2006). The contribution of neuroimaging to the study of language and aphasia. Neuropsychology Review, 16, 171–183.PubMedCrossRef
go back to reference Lein, E. S., Hawrylycz, M. J., Ao, N., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176.PubMedCrossRef Lein, E. S., Hawrylycz, M. J., Ao, N., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176.PubMedCrossRef
go back to reference Lennon, P. A., Cooper, M. L., Peiffer, D. A., et al. (2007). Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review. American Journal of Medical Genetics Part A, 143A, 791–798.PubMedCrossRef Lennon, P. A., Cooper, M. L., Peiffer, D. A., et al. (2007). Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review. American Journal of Medical Genetics Part A, 143A, 791–798.PubMedCrossRef
go back to reference Lieberman, P. (2001). Human language and our reptilian brain. The subcortical bases of speech, syntax, and thought. Perspectives in Biology and Medicine, 44, 32–51.PubMedCrossRef Lieberman, P. (2001). Human language and our reptilian brain. The subcortical bases of speech, syntax, and thought. Perspectives in Biology and Medicine, 44, 32–51.PubMedCrossRef
go back to reference Lim, C. K. P., Ho, C. S. H., Chou, C. H. N., & Waye, M. M. Y. (2011). Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behavioral and Brain Functions, 7, 16.PubMedCrossRef Lim, C. K. P., Ho, C. S. H., Chou, C. H. N., & Waye, M. M. Y. (2011). Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behavioral and Brain Functions, 7, 16.PubMedCrossRef
go back to reference Lind, P. A., Luciano, M., Wright, M. J., et al. (2010). Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. European Journal of Human Genetics, 18, 668–673.PubMedCrossRef Lind, P. A., Luciano, M., Wright, M. J., et al. (2010). Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. European Journal of Human Genetics, 18, 668–673.PubMedCrossRef
go back to reference Lonsdale, J., Thomas, J., Salvatore, M., et al. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580–585.CrossRef Lonsdale, J., Thomas, J., Salvatore, M., et al. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580–585.CrossRef
go back to reference Lowe, H. J., & Barnett, G. O. (1994). Understanding and using the Medical Subject Headings (MeSH) vocabulary to perform literature searches. JAMA: The Journal of the American Medical Association, 271, 1103–1108.CrossRef Lowe, H. J., & Barnett, G. O. (1994). Understanding and using the Medical Subject Headings (MeSH) vocabulary to perform literature searches. JAMA: The Journal of the American Medical Association, 271, 1103–1108.CrossRef
go back to reference Luciano, M., Lind, P. A., Duffy, D. L., et al. (2007). A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biological Psychiatry, 62, 811–817.PubMedCrossRef Luciano, M., Lind, P. A., Duffy, D. L., et al. (2007). A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biological Psychiatry, 62, 811–817.PubMedCrossRef
go back to reference MacDermot, K. D., Bonora, E., Sykes, N., et al. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76, 1074–1080.PubMedCentralPubMedCrossRef MacDermot, K. D., Bonora, E., Sykes, N., et al. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76, 1074–1080.PubMedCentralPubMedCrossRef
go back to reference Marcus, G. F., & Fisher, S. E. F. (2003). In focus: what can genes tell us about speech and language. Trends in Cognitive Sciences, 7, 257–262.PubMedCrossRef Marcus, G. F., & Fisher, S. E. F. (2003). In focus: what can genes tell us about speech and language. Trends in Cognitive Sciences, 7, 257–262.PubMedCrossRef
go back to reference Marino, C., Giorda, R., Luisa Lorusso, M., et al. (2005). A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. European Journal of Human Genetics, 13, 491–499.PubMedCrossRef Marino, C., Giorda, R., Luisa Lorusso, M., et al. (2005). A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. European Journal of Human Genetics, 13, 491–499.PubMedCrossRef
go back to reference Marino, C., Citterio, A., Giorda, R., et al. (2007). Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes, Brain, and Behavior, 6, 640–646.PubMedCrossRef Marino, C., Citterio, A., Giorda, R., et al. (2007). Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes, Brain, and Behavior, 6, 640–646.PubMedCrossRef
go back to reference Marseglia, G., Scordo, M. R., Pescucci, C., et al. (2012). 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. European Journal of Medical Genetics, 55, 216–221.PubMedCrossRef Marseglia, G., Scordo, M. R., Pescucci, C., et al. (2012). 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. European Journal of Medical Genetics, 55, 216–221.PubMedCrossRef
go back to reference Mascheretti, S., Bureau, A., Battaglia, M., et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes, Brain, and Behavior, 12, 47–55.PubMedCrossRef Mascheretti, S., Bureau, A., Battaglia, M., et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes, Brain, and Behavior, 12, 47–55.PubMedCrossRef
go back to reference Meng, H., Hager, K., Held, M., et al. (2005a). TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort. Human Genetics, 118, 87–90.PubMedCrossRef Meng, H., Hager, K., Held, M., et al. (2005a). TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort. Human Genetics, 118, 87–90.PubMedCrossRef
go back to reference Meng, H., Smith, S. D., Hager, K., et al. (2005b). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17053–17058.PubMedCentralPubMedCrossRef Meng, H., Smith, S. D., Hager, K., et al. (2005b). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17053–17058.PubMedCentralPubMedCrossRef
go back to reference Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818–827.PubMedCrossRef Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818–827.PubMedCrossRef
go back to reference Nebel, A., Reese, R., Deuschl, G., et al. (2009). Acquired stuttering after pallidal deep brain stimulation for dystonia. Journal of Neural Transmission, 116, 167–169.PubMedCrossRef Nebel, A., Reese, R., Deuschl, G., et al. (2009). Acquired stuttering after pallidal deep brain stimulation for dystonia. Journal of Neural Transmission, 116, 167–169.PubMedCrossRef
go back to reference Newbury, D. F., Winchester, L., Addis, L., et al. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. American Journal of Human Genetics, 85, 264–272.PubMedCentralPubMedCrossRef Newbury, D. F., Winchester, L., Addis, L., et al. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. American Journal of Human Genetics, 85, 264–272.PubMedCentralPubMedCrossRef
go back to reference Newbury, D. F., Paracchini, S., Scerri, T. S., et al. (2011). Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behavior Genetics, 41, 90–104.PubMedCentralPubMedCrossRef Newbury, D. F., Paracchini, S., Scerri, T. S., et al. (2011). Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behavior Genetics, 41, 90–104.PubMedCentralPubMedCrossRef
go back to reference Ng, L., Bernard, A., Lau, C., et al. (2009). An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 12, 356–362.PubMedCrossRef Ng, L., Bernard, A., Lau, C., et al. (2009). An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 12, 356–362.PubMedCrossRef
go back to reference Nielsen, F. A. (2003). The Brede database: a small database for functional neuroimaging. NeuroImage, Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19–22, 2003, New York, NY. Nielsen, F. A. (2003). The Brede database: a small database for functional neuroimaging. NeuroImage, Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19–22, 2003, New York, NY.
go back to reference Nielsen, F. A. (2013). Brede tools and federating online neuroinformatics databases. Neuroinformatics, this issue. Nielsen, F. A. (2013). Brede tools and federating online neuroinformatics databases. Neuroinformatics, this issue.
go back to reference Noble, E. P. (2003). D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 116B, 103–125.CrossRef Noble, E. P. (2003). D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 116B, 103–125.CrossRef
go back to reference O’Brien, E. K., Zhang, X., Nishimura, C., et al. (2003). Association of specific language impairment (SLI) to the region of 7q31. American Journal of Human Genetics, 72, 1536–1543.PubMedCentralPubMedCrossRef O’Brien, E. K., Zhang, X., Nishimura, C., et al. (2003). Association of specific language impairment (SLI) to the region of 7q31. American Journal of Human Genetics, 72, 1536–1543.PubMedCentralPubMedCrossRef
go back to reference Paracchini, S., Steer, C. D., Buckingham, L.-L., et al. (2008). Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. The American Journal of Psychiatry, 165, 1576–1584.PubMedCrossRef Paracchini, S., Steer, C. D., Buckingham, L.-L., et al. (2008). Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. The American Journal of Psychiatry, 165, 1576–1584.PubMedCrossRef
go back to reference Paracchini, S., Ang, Q. W., Stanley, F. J., et al. (2011). Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population. Genes, Brain, and Behavior, 10, 158–165.PubMedCentralPubMedCrossRef Paracchini, S., Ang, Q. W., Stanley, F. J., et al. (2011). Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population. Genes, Brain, and Behavior, 10, 158–165.PubMedCentralPubMedCrossRef
go back to reference Pariani, M. J., Spencer, A., Graham, J. M., & Rimoin, D. L. (2009). A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. European Journal of Medical Genetics, 52, 123–127.PubMedCentralPubMedCrossRef Pariani, M. J., Spencer, A., Graham, J. M., & Rimoin, D. L. (2009). A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. European Journal of Medical Genetics, 52, 123–127.PubMedCentralPubMedCrossRef
go back to reference Pennington, B. F., & Bishop, D. V. M. (2009). Relations among speech, language and reading disorders. Annual Review of Psychology, 60, 283–306.PubMedCrossRef Pennington, B. F., & Bishop, D. V. M. (2009). Relations among speech, language and reading disorders. Annual Review of Psychology, 60, 283–306.PubMedCrossRef
go back to reference Peter, B., Raskind, W. H., Matsushita, M., et al. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3, 39–49.PubMedCentralPubMedCrossRef Peter, B., Raskind, W. H., Matsushita, M., et al. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3, 39–49.PubMedCentralPubMedCrossRef
go back to reference Pohjalainen, T., Rinne, J. O., Någren, K., et al. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Molecular psychiatry, 3, 256–260. Pohjalainen, T., Rinne, J. O., Någren, K., et al. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Molecular psychiatry, 3, 256–260.
go back to reference Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847.PubMedCentralPubMedCrossRef Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847.PubMedCentralPubMedCrossRef
go back to reference Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.PubMedCentralPubMedCrossRef Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.PubMedCentralPubMedCrossRef
go back to reference Rice, M. L., Smith, S. D., & Gayán, J. (2009). Convergent genetic linkage and associations to language, speech and reading measures in families of probands with specific language impairment. Journal of Neurodevelopmental Disorders, 1, 264–282.PubMedCentralPubMedCrossRef Rice, M. L., Smith, S. D., & Gayán, J. (2009). Convergent genetic linkage and associations to language, speech and reading measures in families of probands with specific language impairment. Journal of Neurodevelopmental Disorders, 1, 264–282.PubMedCentralPubMedCrossRef
go back to reference Roll, P., Rudolf, G., Pereira, S., et al. (2006). SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 15, 1195–1207.PubMedCrossRef Roll, P., Rudolf, G., Pereira, S., et al. (2006). SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 15, 1195–1207.PubMedCrossRef
go back to reference Saviour, P., Kumar, S., Kiran, U., et al. (2008). Allelic variants of DYX1C1 are not associated with dyslexia in India. Indian Journal of Human Genetics, 14, 99–102.PubMedCentralPubMedCrossRef Saviour, P., Kumar, S., Kiran, U., et al. (2008). Allelic variants of DYX1C1 are not associated with dyslexia in India. Indian Journal of Human Genetics, 14, 99–102.PubMedCentralPubMedCrossRef
go back to reference Scerri, T. S., Fisher, S. E., Francks, C., et al. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 41, 853–857.PubMedCrossRef Scerri, T. S., Fisher, S. E., Francks, C., et al. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 41, 853–857.PubMedCrossRef
go back to reference Scerri, T. S., Morris, A. P., Buckingham, L.-L., et al. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70, 237–245.PubMedCentralPubMedCrossRef Scerri, T. S., Morris, A. P., Buckingham, L.-L., et al. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70, 237–245.PubMedCentralPubMedCrossRef
go back to reference Scharff, C., & Petri, J. (2011). Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philosophical Transactions of the Royal Society of London Series B, Biological sciences, 366, 2124–2140.PubMedCrossRef Scharff, C., & Petri, J. (2011). Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philosophical Transactions of the Royal Society of London Series B, Biological sciences, 366, 2124–2140.PubMedCrossRef
go back to reference Schumacher, J., Anthoni, H., Dahdouh, F., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 52–62.PubMedCentralPubMedCrossRef Schumacher, J., Anthoni, H., Dahdouh, F., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 52–62.PubMedCentralPubMedCrossRef
go back to reference Simmons, T. R., Flax, J. F., Azaro, M. A., et al. (2010). Increasing genotype-phenotype model determinism: application to bivariate reading/language traits and epistatic interactions in language-impaired families. Human Heredity, 70, 232–244.PubMedCrossRef Simmons, T. R., Flax, J. F., Azaro, M. A., et al. (2010). Increasing genotype-phenotype model determinism: application to bivariate reading/language traits and epistatic interactions in language-impaired families. Human Heredity, 70, 232–244.PubMedCrossRef
go back to reference Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001) SNOMED clinical terms: overview of the development process and project status. Proc AMIA Symp 662–6. Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001) SNOMED clinical terms: overview of the development process and project status. Proc AMIA Symp 662–6.
go back to reference Sunkin, S. M., Ng, L., Lau, C., et al. (2013). Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Research, 41, D996–D1008.PubMedCentralPubMedCrossRef Sunkin, S. M., Ng, L., Lau, C., et al. (2013). Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Research, 41, D996–D1008.PubMedCentralPubMedCrossRef
go back to reference Taipale, M., Kaminen, N., Nopola-Hemmi, J., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 11553–11558.PubMedCentralPubMedCrossRef Taipale, M., Kaminen, N., Nopola-Hemmi, J., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 11553–11558.PubMedCentralPubMedCrossRef
go back to reference Tolosa, A., Sanjuán, J., Dagnall, A. M., et al. (2010). FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Medical Genetics, 11, 114.PubMedCentralPubMedCrossRef Tolosa, A., Sanjuán, J., Dagnall, A. M., et al. (2010). FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Medical Genetics, 11, 114.PubMedCentralPubMedCrossRef
go back to reference Ullman, M. T. (2001). A neurocognitive perspective on language: the declarative/procedural model. Nature Reviews Neuroscience, 2, 717–726.PubMedCrossRef Ullman, M. T. (2001). A neurocognitive perspective on language: the declarative/procedural model. Nature Reviews Neuroscience, 2, 717–726.PubMedCrossRef
go back to reference Van der Merwe, A. (2001). A theoretical framework for the characterization of pathological speech sensorimotor control. In M. McNeil (Ed.), Clinical management of sensorimotor speech disorders (pp. 1–25). New York: Thieme. Van der Merwe, A. (2001). A theoretical framework for the characterization of pathological speech sensorimotor control. In M. McNeil (Ed.), Clinical management of sensorimotor speech disorders (pp. 1–25). New York: Thieme.
go back to reference Van Essen, D. C. (2005). A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage, 28, 635–662.PubMedCrossRef Van Essen, D. C. (2005). A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage, 28, 635–662.PubMedCrossRef
go back to reference Venkatesh, S. K., Siddaiah, A., Padakannaya, P., & Ramachandra, N. B. (2011). An examination of candidate gene SNPs for dyslexia in an Indian sample. Behavior Genetics, 41, 105–109.PubMedCrossRef Venkatesh, S. K., Siddaiah, A., Padakannaya, P., & Ramachandra, N. B. (2011). An examination of candidate gene SNPs for dyslexia in an Indian sample. Behavior Genetics, 41, 105–109.PubMedCrossRef
go back to reference Venkatesh, S. K., Siddaiah, A., Padakannaya, P., & Ramachandra, N. B. (2013) Analysis of genetic variants of dyslexia candidate genes KIAA0319 and DCDC2 in Indian population. Journal of Human Genetics. Venkatesh, S. K., Siddaiah, A., Padakannaya, P., & Ramachandra, N. B. (2013) Analysis of genetic variants of dyslexia candidate genes KIAA0319 and DCDC2 in Indian population. Journal of Human Genetics.
go back to reference Vernes, S. C., & Fisher, S. E. (2009). Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions, 37, 1263–1269.PubMedCrossRef Vernes, S. C., & Fisher, S. E. (2009). Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions, 37, 1263–1269.PubMedCrossRef
go back to reference Vernes, S. C., Newbury, D. F., Abrahams, B. S., et al. (2008). A functional genetic link between distinct developmental language disorders. The New England Journal of Medicine, 359, 2337–2345.PubMedCentralPubMedCrossRef Vernes, S. C., Newbury, D. F., Abrahams, B. S., et al. (2008). A functional genetic link between distinct developmental language disorders. The New England Journal of Medicine, 359, 2337–2345.PubMedCentralPubMedCrossRef
go back to reference Watkins, K. (2011). Developmental disorders of speech and language: from genes to brain structure and function. Progress in Brain Research, 189, 225–238.PubMedCrossRef Watkins, K. (2011). Developmental disorders of speech and language: from genes to brain structure and function. Progress in Brain Research, 189, 225–238.PubMedCrossRef
go back to reference Whitehouse, A. J. O., Bishop, D. V. M., Ang, Q. W., et al. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain, and Behavior, 10, 451–456.PubMedCentralPubMedCrossRef Whitehouse, A. J. O., Bishop, D. V. M., Ang, Q. W., et al. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain, and Behavior, 10, 451–456.PubMedCentralPubMedCrossRef
go back to reference Wigg, K. G., Couto, J. M., Feng, Y., et al. (2004). Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Molecular Psychiatry, 9, 1111–1121.PubMedCrossRef Wigg, K. G., Couto, J. M., Feng, Y., et al. (2004). Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Molecular Psychiatry, 9, 1111–1121.PubMedCrossRef
go back to reference Yarkoni, T., Poldrack, R. A., Nichols, T. E., et al. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.PubMedCentralPubMedCrossRef Yarkoni, T., Poldrack, R. A., Nichols, T. E., et al. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.PubMedCentralPubMedCrossRef
go back to reference Zeng, H., Shen, E. H., Hohmann, J. G., et al. (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell, 149, 483–496.PubMedCentralPubMedCrossRef Zeng, H., Shen, E. H., Hohmann, J. G., et al. (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell, 149, 483–496.PubMedCentralPubMedCrossRef
go back to reference Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4: Article17. Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4: Article17.
go back to reference Zhang, Y., Li, J., Tardif, T., et al. (2012). Association of the DYX1C1 dyslexia susceptibility gene with orthography in the Chinese population. PloS ONE, 7, e42969.PubMedCentralPubMedCrossRef Zhang, Y., Li, J., Tardif, T., et al. (2012). Association of the DYX1C1 dyslexia susceptibility gene with orthography in the Chinese population. PloS ONE, 7, e42969.PubMedCentralPubMedCrossRef
go back to reference Zou, L., Chen, W., Shao, S., et al. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated meta-analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B, 970–976.CrossRef Zou, L., Chen, W., Shao, S., et al. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated meta-analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B, 970–976.CrossRef
Metadata
Title
An Informatics Approach to Integrating Genetic and Neurological Data in Speech and Language Neuroscience
Authors
Jason W. Bohland
Emma M. Myers
Esther Kim
Publication date
01-01-2014
Publisher
Springer US
Published in
Neuroinformatics / Issue 1/2014
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-013-9201-6

Other articles of this Issue 1/2014

Neuroinformatics 1/2014 Go to the issue

Premium Partner