Skip to main content
Top

2020 | OriginalPaper | Chapter

An Integrated Energy-Efficient Scheduling and Train Control Model with Regenerative Braking for Metro System

Authors : Xinchen Ran, Shaokuan Chen, Lei Chen

Published in: Green, Smart and Connected Transportation Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rising energy cost and environmental awareness make energy-efficient operation a key issue for metro management. The speed profile and timetable optimization are two significant ways to reduce total energy consumption for metro systems. This paper proposes an integrated speed profile and timetable optimization model to reduce the net energy consumption while incorporating with complex track conditions like undulate gradients, curves and tunnels. The net energy consumption is minimized by force coefficients and coast control for single train movement and accelerating and braking synchronization for multiple trains. An efficient hybrid particle swarm method based on the particle swarm optimization and genetic algorithm is designed to obtain a satisfactory solution. Finally, numerical case studies based on one metro line in Beijing are conducted to validate the energy-efficient performance of integrated model and the results show that the integrated model can achieve a better tradeoff between traction energy consumption and reused braking energy on comparison with individual speed profile and timetable optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Douglas H, Roberts C, Hillmansen S et al (2015) An assessment of available measures to reduce traction energy use in railway networks. Energy Convers Manag 106(12):1149–1165CrossRef Douglas H, Roberts C, Hillmansen S et al (2015) An assessment of available measures to reduce traction energy use in railway networks. Energy Convers Manag 106(12):1149–1165CrossRef
2.
go back to reference Scheepmaker GM, Goverde RMP, Kroon LG (2017) Review of energy-efficient train control and timetabling. Eur J Oper Res 257(2):355–376MathSciNetCrossRef Scheepmaker GM, Goverde RMP, Kroon LG (2017) Review of energy-efficient train control and timetabling. Eur J Oper Res 257(2):355–376MathSciNetCrossRef
4.
5.
go back to reference Liu R, Golovitcher IM (2003) Energy-efficient operation of rail vehicles. Transp Res Part A 37(10):917–932 Liu R, Golovitcher IM (2003) Energy-efficient operation of rail vehicles. Transp Res Part A 37(10):917–932
6.
go back to reference Albrecht A, Howlett P, Pudney P et al (2016) The key principles of optimal train control—Part 1: formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transp Res Part B Methodol 94(2):482–508CrossRef Albrecht A, Howlett P, Pudney P et al (2016) The key principles of optimal train control—Part 1: formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transp Res Part B Methodol 94(2):482–508CrossRef
7.
go back to reference Albrecht A, Howlett P, Pudney P et al (2016) The key principles of optimal train control—part 2: existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transp Res Part B Methodol 94(2):509–538CrossRef Albrecht A, Howlett P, Pudney P et al (2016) The key principles of optimal train control—part 2: existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transp Res Part B Methodol 94(2):509–538CrossRef
8.
go back to reference Lu S, Hillmansen S, Ho TK et al (2013) Single-Train trajectory optimization. IEEE Trans Intell Transp Syst 14(2):743–750CrossRef Lu S, Hillmansen S, Ho TK et al (2013) Single-Train trajectory optimization. IEEE Trans Intell Transp Syst 14(2):743–750CrossRef
9.
go back to reference Zhao N, Roberts C, Hillmansen S et al (2015) A multiple train trajectory optimization to minimize energy consumption and delay. IEEE Trans Intell Transp Syst 16(5):2363–2372CrossRef Zhao N, Roberts C, Hillmansen S et al (2015) A multiple train trajectory optimization to minimize energy consumption and delay. IEEE Trans Intell Transp Syst 16(5):2363–2372CrossRef
10.
go back to reference Chang CS, Sim SS (1997) Optimising train movements through coast control using genetic algorithms. Electric Power Appl IEE Proc 144(1):65–73CrossRef Chang CS, Sim SS (1997) Optimising train movements through coast control using genetic algorithms. Electric Power Appl IEE Proc 144(1):65–73CrossRef
11.
go back to reference Wong KK, Ho TK (2004) Dynamic coast control of train movement with genetic algorithm. Int J Syst Sci 35(13–14):835–846CrossRef Wong KK, Ho TK (2004) Dynamic coast control of train movement with genetic algorithm. Int J Syst Sci 35(13–14):835–846CrossRef
12.
go back to reference Ke BR, Chen MC, Lin CL (2009) Block-layout design using MAX–MIN ant system for saving energy on mass rapid transit systems. IEEE Trans Intell Transp Syst 10(2):226–235CrossRef Ke BR, Chen MC, Lin CL (2009) Block-layout design using MAX–MIN ant system for saving energy on mass rapid transit systems. IEEE Trans Intell Transp Syst 10(2):226–235CrossRef
13.
go back to reference Yang X, Li X, Ning B et al (2015) A survey on energy-efficient train operation for urban rail transit. IEEE Trans Intell Transp Syst 17(1):2–13CrossRef Yang X, Li X, Ning B et al (2015) A survey on energy-efficient train operation for urban rail transit. IEEE Trans Intell Transp Syst 17(1):2–13CrossRef
14.
go back to reference Yang X, Li X, Gao Z et al (2013) A cooperative scheduling model for timetable optimization in subway systems. IEEE Trans Intell Transp Syst 14(1):438–447CrossRef Yang X, Li X, Gao Z et al (2013) A cooperative scheduling model for timetable optimization in subway systems. IEEE Trans Intell Transp Syst 14(1):438–447CrossRef
15.
go back to reference Pena-Alcaraz M, Fernandez A, Cucala AP et al (2011) Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy. Proc Inst Mech Eng Part F J Rail & Rapid Transit 226(4):397–408CrossRef Pena-Alcaraz M, Fernandez A, Cucala AP et al (2011) Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy. Proc Inst Mech Eng Part F J Rail & Rapid Transit 226(4):397–408CrossRef
16.
go back to reference Li X, Hong KL (2014) An energy-efficient scheduling and speed control approach for metro rail operations. Transp Res Part B Methodol 64(4):73–89CrossRef Li X, Hong KL (2014) An energy-efficient scheduling and speed control approach for metro rail operations. Transp Res Part B Methodol 64(4):73–89CrossRef
17.
go back to reference Yang X, Chen A, Li X et al (2015) An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems. Transp Res Part C Emerg Technol 57:13–29CrossRef Yang X, Chen A, Li X et al (2015) An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems. Transp Res Part C Emerg Technol 57:13–29CrossRef
18.
go back to reference Ye H, Liu R (2016) A multiphase optimal control method for multi-train control and scheduling on railway lines. Transp Res Part B Methodol 93:377–393CrossRef Ye H, Liu R (2016) A multiphase optimal control method for multi-train control and scheduling on railway lines. Transp Res Part B Methodol 93:377–393CrossRef
19.
go back to reference Zhao N, Roberts C, Hillmansen S et al (2017) An integrated metro operation optimization to minimize energy consumption ☆. Transp Res Part C Emerg Technol 75:168–182CrossRef Zhao N, Roberts C, Hillmansen S et al (2017) An integrated metro operation optimization to minimize energy consumption ☆. Transp Res Part C Emerg Technol 75:168–182CrossRef
20.
go back to reference Chevrier R, Pellegrini P, Rodriguez J (2013) Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times. Transp Res Part C Emerg Technol 37(3):20–41CrossRef Chevrier R, Pellegrini P, Rodriguez J (2013) Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times. Transp Res Part C Emerg Technol 37(3):20–41CrossRef
21.
go back to reference Ding Y, Liu H, Bai Y et al (2011) A two-level optimization model and algorithm for energy-efficient urban train operation. J Transp Syst Eng Inf Technol 11(1):96–101 Ding Y, Liu H, Bai Y et al (2011) A two-level optimization model and algorithm for energy-efficient urban train operation. J Transp Syst Eng Inf Technol 11(1):96–101
Metadata
Title
An Integrated Energy-Efficient Scheduling and Train Control Model with Regenerative Braking for Metro System
Authors
Xinchen Ran
Shaokuan Chen
Lei Chen
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0644-4_22

Premium Partner