Skip to main content
Top

2017 | OriginalPaper | Chapter

An Integrated Solidification and Heat Treatment Model for Predicting Mechanical Properties of Cast Aluminum Alloy Component

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a newly developed modeling tool is presented which computes the local mechanical properties of cast and precipitation hardening heat treated aluminum alloy component. The integrated model simulates both casting and heat treating processes, and it computes the local hardness, yield strength and ultimate tensile strength, that developed in the casting during each step. Both alloy solidification and precipitation hardening heat treatment steps are simulated. The solidification model takes into account grains nucleation and the mushy zone front undercooling to predict the growth of the dendritic and eutectic microstructures. The predicted secondary dendrite arm spacing (SDAS) map is used to calculate the local strengths in the subsequent heat treatment steps. The heat treating model takes into account quenching and aging steps. The integrated model uses an extensive database that was developed specifically for the A356 alloy under consideration. The database includes temperature dependent mechanical, physical, and thermal properties of the alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
OpenFOAM Foundation | OPENFOAM and OpenCFD are registered trademarks of OpenCFD Ltd.
 
2
Developed and marketed by Sente Software Ltd., Surrey Technology Centre, 40 Occam Road, GU2 7YG, United Kingdom.
 
Literature
1.
go back to reference J. Dantzig, M. Rappaz, Solidification. (EPFL press, 2009) J. Dantzig, M. Rappaz, Solidification. (EPFL press, 2009)
2.
go back to reference T.L. Finn, M.G. Chu, W.D. Bennon, Micro/macro scale phenomena in solidification. ASME, HTD 218, 17–26 (1992) T.L. Finn, M.G. Chu, W.D. Bennon, Micro/macro scale phenomena in solidification. ASME, HTD 218, 17–26 (1992)
3.
go back to reference CA Gandin et al, A Three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metall. Mater. Trans. A 30(12), 3153–3165 (1999)CrossRef CA Gandin et al, A Three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metall. Mater. Trans. A 30(12), 3153–3165 (1999)CrossRef
4.
go back to reference S. Mosbah, Grain structure and segregation modeling using coupled FV and DP model. Paper presented at the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA (2014) S. Mosbah, Grain structure and segregation modeling using coupled FV and DP model. Paper presented at the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA (2014)
5.
go back to reference S. Mosbah, Three dimensional model of solidification grain structure and segregation (in preparation, 2015) S. Mosbah, Three dimensional model of solidification grain structure and segregation (in preparation, 2015)
6.
go back to reference M. Bellet et al, Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys. Int. J. Therm. Sci. 48(11), 2013–2016 (2009)CrossRef M. Bellet et al, Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys. Int. J. Therm. Sci. 48(11), 2013–2016 (2009)CrossRef
7.
go back to reference J.W. Evancho, J.T. Staley, Kinetics of precipitation in aluminum alloys during continuous cooling. Metall. Trans. 5(1), 43–47 (1974) J.W. Evancho, J.T. Staley, Kinetics of precipitation in aluminum alloys during continuous cooling. Metall. Trans. 5(1), 43–47 (1974)
8.
go back to reference J.T. Staley, R.D. Doherty, A.P. Jaworski, Improved Model to Predict Properties of. Metall. Trans. A, 24 (11), 2417–2427 (1993) J.T. Staley, R.D. Doherty, A.P. Jaworski, Improved Model to Predict Properties of. Metall. Trans. A, 24 (11), 2417–2427 (1993)
9.
go back to reference H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminium alloys—I. The model. Acta Metall. Mater. 38(10), 1789–1802 (1990)CrossRef H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminium alloys—I. The model. Acta Metall. Mater. 38(10), 1789–1802 (1990)CrossRef
10.
go back to reference C. Wu, M.M. Makhlouf, Ph.D. Thesis, Worcester Polytechnic Institute, 2012 C. Wu, M.M. Makhlouf, Ph.D. Thesis, Worcester Polytechnic Institute, 2012
11.
go back to reference M. Avrami, Kinetics of phase change. I general theory. J. Chem. Phys. 7(12), 1103–1112 (1939)CrossRef M. Avrami, Kinetics of phase change. I general theory. J. Chem. Phys. 7(12), 1103–1112 (1939)CrossRef
12.
go back to reference J.T. Staley, Quench factor analysis of aluminium alloys. Mater. Sci. Technol. 3(11), 923–935 (1987)CrossRef J.T. Staley, Quench factor analysis of aluminium alloys. Mater. Sci. Technol. 3(11), 923–935 (1987)CrossRef
13.
go back to reference P.A. Rometsch, M.J. Starink, P.J. Gregson, Improvements in quench factor modelling. Mater. Sci. Eng., A 339(1), 255–264 (2003)CrossRef P.A. Rometsch, M.J. Starink, P.J. Gregson, Improvements in quench factor modelling. Mater. Sci. Eng., A 339(1), 255–264 (2003)CrossRef
14.
go back to reference K.A. Jackson, J.D. Hunt, Lamellar and rod eutectic growth. AIME Met. Soc. Trans. 236, 1129–1142 (1966) K.A. Jackson, J.D. Hunt, Lamellar and rod eutectic growth. AIME Met. Soc. Trans. 236, 1129–1142 (1966)
15.
go back to reference S.J. Hong et al, Effect of microstructural variables on tensile behaviour of A356 cast aluminium alloy. Mater. Sci. Technol. 23(7), 810–814 (2007)CrossRef S.J. Hong et al, Effect of microstructural variables on tensile behaviour of A356 cast aluminium alloy. Mater. Sci. Technol. 23(7), 810–814 (2007)CrossRef
16.
go back to reference ASTM B108/B108 M-15, Standard specification for aluminum-alloy permanent mold castings. ASTM International, West Conshohocken, PA (2015). http://www.astm.org ASTM B108/B108 M-15, Standard specification for aluminum-alloy permanent mold castings. ASTM International, West Conshohocken, PA (2015). http://​www.​astm.​org
17.
go back to reference ASTM E1225–04, Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. ASTM International, West Conshohocken, PA (2004). http://www.astm.org ASTM E1225–04, Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. ASTM International, West Conshohocken, PA (2004). http://​www.​astm.​org
18.
go back to reference G. Ran, J. Zhou, Q.G. Wang. The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 Cast aluminum alloy. J. Alloys Comp., 421(1), 80–86 (2006) G. Ran, J. Zhou, Q.G. Wang. The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 Cast aluminum alloy. J. Alloys Comp., 421(1), 80–86 (2006)
19.
go back to reference T. Carozzani, Ch.-A. Gandin, H. Digonnet. Optimized parallel computing for cellular automaton–finite element modeling of solidification grain structures. Modell. Simul. Mater. Sci. Eng., 22, 015012, 21 (2014) T. Carozzani, Ch.-A. Gandin, H. Digonnet. Optimized parallel computing for cellular automaton–finite element modeling of solidification grain structures. Modell. Simul. Mater. Sci. Eng., 22, 015012, 21 (2014)
Metadata
Title
An Integrated Solidification and Heat Treatment Model for Predicting Mechanical Properties of Cast Aluminum Alloy Component
Authors
Chang Kai Wu
Salem Mosbah
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57864-4_21

Premium Partners