Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 10/2023

07-05-2023 | Original Article

An interpretable neural network TV program recommendation based on SHAP

Authors: Fulian Yin, Ruiling Fu, Xiaoli Feng, Tongtong Xing, Meiqi Ji

Published in: International Journal of Machine Learning and Cybernetics | Issue 10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of artificial intelligence, many fields are trying to solve problems with the powerful representation ability of neural networks. Recently, recommendation systems based on neural networks have become increasingly popular and the applications are expanding, especially in TV program recommendations. However, the opacity of the neural networks has resulted in users being unable to fully trust the predicted recommendations, which increases the need for interpretable recommendation systems. This paper analyzes the interpretability of a recommendation model based on neural networks. We propose a convolutional neural TV program recommendation based on auxiliary information (CNPR-AI) to learn the program features effectively. First, we construct program dictionaries and leverage word embeddings to learn textual auxiliary information to generate program representations. We further learn program representations to generate user representations with convolutional neural networks. Then we input the program representation and user representation into the prediction module to obtain the recommendation results. As SHapley Additive exPlanations (SHAP) can provide interpretation solutions for deep learning, we utilize it to generate visual interpretations for our model to show the role played by each TV program feature in predicting user interests. We believe that the interpretations developed can help users better understand the learning mechanisms of the neural network and reflect different users’ preferences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Pu P, Chen L, Hu R (2012) Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model User-Adap Inter 22(4–5):317–355CrossRef Pu P, Chen L, Hu R (2012) Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model User-Adap Inter 22(4–5):317–355CrossRef
2.
3.
go back to reference Zhao Z-D, Shang M (2010) User-Based Collaborative-Filtering Recommendation Algorithms on Hadoop. In: Proceedings of the 2010 Third International Conference on Knowledge Discovery and Data Mining, pp 478–481 Zhao Z-D, Shang M (2010) User-Based Collaborative-Filtering Recommendation Algorithms on Hadoop. In: Proceedings of the 2010 Third International Conference on Knowledge Discovery and Data Mining, pp 478–481
4.
go back to reference Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, pp 285–295 Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, pp 285–295
5.
go back to reference Balabanović M, Shoham Y (1998) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72CrossRef Balabanović M, Shoham Y (1998) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72CrossRef
6.
go back to reference Milano S, Taddeo M, Floridi L (2020) Recommender systems and their ethical challenges. AI & Soc 35:957–967CrossRef Milano S, Taddeo M, Floridi L (2020) Recommender systems and their ethical challenges. AI & Soc 35:957–967CrossRef
7.
go back to reference Wang P, Cai R, Wang H (2022) Graph-based Extractive Explainer for Recommendations. Proc ACM Web Conf 2022:2163–2171 Wang P, Cai R, Wang H (2022) Graph-based Extractive Explainer for Recommendations. Proc ACM Web Conf 2022:2163–2171
8.
go back to reference Xian Y, Zhao T, Li J, Chan J, Kan A, Ma J, Dong XL, Faloutsos C, Karypis G, Muthukrishnan S et al (2021) Ex3: Explainable attribute-aware item-set recommendations. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp 484–494 Xian Y, Zhao T, Li J, Chan J, Kan A, Ma J, Dong XL, Faloutsos C, Karypis G, Muthukrishnan S et al (2021) Ex3: Explainable attribute-aware item-set recommendations. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp 484–494
9.
go back to reference Zhang Y, Lai G, Zhang M, Zhang Y, Liu Y, Ma S (2014) Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th international ACM SIGIR conference on Research & Development in Information Retrieval, pp 83–92 Zhang Y, Lai G, Zhang M, Zhang Y, Liu Y, Ma S (2014) Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th international ACM SIGIR conference on Research & Development in Information Retrieval, pp 83–92
10.
go back to reference Zhang Y, Chen X (2020) Explainable recommendation: a survey and new perspectives. Found Trends Inf Retr 14(1):1–101CrossRef Zhang Y, Chen X (2020) Explainable recommendation: a survey and new perspectives. Found Trends Inf Retr 14(1):1–101CrossRef
11.
go back to reference Herlocker JL, Konstan JA, Riedl J (2000) Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM conference on Computer supported cooperative work, pp 241–250 Herlocker JL, Konstan JA, Riedl J (2000) Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM conference on Computer supported cooperative work, pp 241–250
12.
go back to reference Zhao WX, Li S, He Y, Wang L, Wen J-R, Li X (2016) Exploring demographic information in social media for product recommendation. Knowl Inf Syst 49(1):61–89CrossRef Zhao WX, Li S, He Y, Wang L, Wen J-R, Li X (2016) Exploring demographic information in social media for product recommendation. Knowl Inf Syst 49(1):61–89CrossRef
13.
go back to reference Hou Y, Yang N, Wu Y, Philip SY (2019) Explainable recommendation with fusion of aspect information. World Wide Web 22(1):221–240CrossRef Hou Y, Yang N, Wu Y, Philip SY (2019) Explainable recommendation with fusion of aspect information. World Wide Web 22(1):221–240CrossRef
14.
go back to reference Li P, Wang Z, Ren Z, Bing L, Lam W (2017) Neural rating regression with abstractive tips generation for recommendation. In: Proceedings of the 40th International ACM SIGIR conference on Research & Development in Information Retrieval, pp 345–354 Li P, Wang Z, Ren Z, Bing L, Lam W (2017) Neural rating regression with abstractive tips generation for recommendation. In: Proceedings of the 40th International ACM SIGIR conference on Research & Development in Information Retrieval, pp 345–354
15.
go back to reference Lin Y, Ren P, Chen Z, Ren Z, Ma J, de Rijke M (2019) Explainable fashion recommendation with joint outfit matching and comment generation. IEEE Trans Knowl Data Eng 32(8):1502–1516CrossRef Lin Y, Ren P, Chen Z, Ren Z, Ma J, de Rijke M (2019) Explainable fashion recommendation with joint outfit matching and comment generation. IEEE Trans Knowl Data Eng 32(8):1502–1516CrossRef
16.
go back to reference Quijano-Sanchez L, Sauer C, Recio-Garcia JA, Diaz-Agudo B (2017) Make it personal: a social explanation system applied to group recommendations. Expert Syst Appl 76:36–48CrossRef Quijano-Sanchez L, Sauer C, Recio-Garcia JA, Diaz-Agudo B (2017) Make it personal: a social explanation system applied to group recommendations. Expert Syst Appl 76:36–48CrossRef
17.
go back to reference Cheng W, Shen Y, Huang L, Zhu Y (2019) Incorporating Interpretability into Latent Factor Models via Fast Influence Analysis. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 885–893 Cheng W, Shen Y, Huang L, Zhu Y (2019) Incorporating Interpretability into Latent Factor Models via Fast Influence Analysis. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 885–893
18.
go back to reference Tan Y, Zhang M, Liu Y, Ma S (2016) Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp 2640–2646 Tan Y, Zhang M, Liu Y, Ma S (2016) Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp 2640–2646
19.
go back to reference Ai Q, Azizi V, Chen X, Zhang Y (2018) Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms 11(9):137MathSciNetCrossRef Ai Q, Azizi V, Chen X, Zhang Y (2018) Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms 11(9):137MathSciNetCrossRef
20.
go back to reference Xian Y, Fu Z, Muthukrishnan S, de Melo G, Zhang Y (2019) Reinforcement Knowledge Graph Reasoning for Explainable Recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research & Development in Information Retrieval, pp 285–294 Xian Y, Fu Z, Muthukrishnan S, de Melo G, Zhang Y (2019) Reinforcement Knowledge Graph Reasoning for Explainable Recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research & Development in Information Retrieval, pp 285–294
21.
go back to reference Davidson J, Liebald B, Liu J, Nandy P, Van Vleet T, Gargi U, Gupta S, He Y, Lambert M, Livingston B et al (2010) The YouTube video recommendation system. In: Proceedings of the fourth ACM conference on Recommender systems, pp 293–296 Davidson J, Liebald B, Liu J, Nandy P, Van Vleet T, Gargi U, Gupta S, He Y, Lambert M, Livingston B et al (2010) The YouTube video recommendation system. In: Proceedings of the fourth ACM conference on Recommender systems, pp 293–296
22.
go back to reference Wang S, Wan W, Qu T, Dong Y (2021) Auxiliary information-enhanced recommendations. Appl Sci 11(19):8830CrossRef Wang S, Wan W, Qu T, Dong Y (2021) Auxiliary information-enhanced recommendations. Appl Sci 11(19):8830CrossRef
23.
go back to reference Liu Y-Y, Yang B, Pei H-B, Huang J (2020) Neural explainable recommender model based on attributes and reviews. J Comput Sci Technol 35:1446–1460CrossRef Liu Y-Y, Yang B, Pei H-B, Huang J (2020) Neural explainable recommender model based on attributes and reviews. J Comput Sci Technol 35:1446–1460CrossRef
24.
go back to reference Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. The Adaptive Web 4321:291–324CrossRef Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. The Adaptive Web 4321:291–324CrossRef
25.
go back to reference Lee Y-H, Wei C-P, Hu PJ-H, Cheng T-H, Lan C-W (2020) Small clues tell: a collaborative expansion approach for effective content-based recommendations. J Organ Comput Electron Commer 30(2):111–128CrossRef Lee Y-H, Wei C-P, Hu PJ-H, Cheng T-H, Lan C-W (2020) Small clues tell: a collaborative expansion approach for effective content-based recommendations. J Organ Comput Electron Commer 30(2):111–128CrossRef
26.
go back to reference Lops P, Gemmis MD, Semeraro G (2011) Content-based recommender systems: State of the art and trends. Recommender Systems Handbook 73–105 Lops P, Gemmis MD, Semeraro G (2011) Content-based recommender systems: State of the art and trends. Recommender Systems Handbook 73–105
27.
go back to reference Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp 2643–2651 Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp 2643–2651
28.
go back to reference Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1235–1244 Wang H, Wang N, Yeung DY (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1235–1244
29.
30.
go back to reference Batmaz Z, Yurekli A, Bilge A, Kaleli C (2019) A review on deep learning for recommender systems: challenges and remedies. Artif Intell Rev 52:1–37CrossRef Batmaz Z, Yurekli A, Bilge A, Kaleli C (2019) A review on deep learning for recommender systems: challenges and remedies. Artif Intell Rev 52:1–37CrossRef
31.
go back to reference Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M et al (2016) Wide & deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems, pp 7–10 Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M et al (2016) Wide & deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems, pp 7–10
32.
go back to reference Wang R, Fu B, Fu G, Wang M (2017) Deep & cross network for ad click predictions. In: Proceedings of the ADKDD’17, pp 1–7 Wang R, Fu B, Fu G, Wang M (2017) Deep & cross network for ad click predictions. In: Proceedings of the ADKDD’17, pp 1–7
33.
go back to reference Guo H, Tang R, Ye Y, Li Z, He Z (2017) DeepFM: a factorization-machine based neural network for CTR prediction. arXiv: 1703.04247 Guo H, Tang R, Ye Y, Li Z, He Z (2017) DeepFM: a factorization-machine based neural network for CTR prediction. arXiv: 1703.04247
34.
go back to reference Zhang X, Liu H, Chen X, Zhong J, Wang D (2020) A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf Sci 519:306–316CrossRef Zhang X, Liu H, Chen X, Zhong J, Wang D (2020) A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf Sci 519:306–316CrossRef
35.
go back to reference Chu W-T, Tsai Y-L (2017) A hybrid recommendation system considering visual information for predicting favorite restaurants. World Wide Web 20(6):1313–1331CrossRef Chu W-T, Tsai Y-L (2017) A hybrid recommendation system considering visual information for predicting favorite restaurants. World Wide Web 20(6):1313–1331CrossRef
36.
go back to reference Kim D, Park CY, Oh J, Lee S, Yu H (2016) Convolutional Matrix Factorization for Document Context-Aware Recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp 233–240 Kim D, Park CY, Oh J, Lee S, Yu H (2016) Convolutional Matrix Factorization for Document Context-Aware Recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp 233–240
37.
go back to reference Wang W, Ye C, Yang P (2020) Research on Movie Recommendation Model Based on LSTM and CNN. In: Proceedings of 2020 5th international conference on computational intelligence and applications, pp 28–32 Wang W, Ye C, Yang P (2020) Research on Movie Recommendation Model Based on LSTM and CNN. In: Proceedings of 2020 5th international conference on computational intelligence and applications, pp 28–32
38.
go back to reference Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery & data mining, pp 1135–1144 Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery & data mining, pp 1135–1144
39.
go back to reference Strumbelj E, Kononenko I (2014) Explaining prediction models and individual predictions with feature contributions. Knowl Inf Syst 41:647–665CrossRef Strumbelj E, Kononenko I (2014) Explaining prediction models and individual predictions with feature contributions. Knowl Inf Syst 41:647–665CrossRef
40.
go back to reference Lipton ZC (2016) The mythos of model interpretability. Commun ACM 61:36–43CrossRef Lipton ZC (2016) The mythos of model interpretability. Commun ACM 61:36–43CrossRef
41.
go back to reference Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM Comput Surv 51(5):1–42CrossRef Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM Comput Surv 51(5):1–42CrossRef
43.
go back to reference Wu L, Quan C, Li C, Wang Q, Zheng B, Luo X (2019) A context-aware user-item representation learning for item recommendation. ACM Trans Inform Syst 37(2):1–29CrossRef Wu L, Quan C, Li C, Wang Q, Zheng B, Luo X (2019) A context-aware user-item representation learning for item recommendation. ACM Trans Inform Syst 37(2):1–29CrossRef
44.
go back to reference Chen X, Chen H, Xu H, Zhang Y, Cao Y, Qin Z, Zha H (2019) Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation. In: Proceedings of the 42nd international ACM SIGIR conference on research & development in information retrieval, pp 765–774 Chen X, Chen H, Xu H, Zhang Y, Cao Y, Qin Z, Zha H (2019) Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation. In: Proceedings of the 42nd international ACM SIGIR conference on research & development in information retrieval, pp 765–774
45.
go back to reference Ozsoy MG, O’Reilly-Morgan D, Symeonidis P, Tragos EZ, Hurley N, Smyth B, Lawlor A (2020) MP4Rec: explainable and accurate top-N recommendations in heterogeneous information networks. IEEE Access 8:181835–181847CrossRef Ozsoy MG, O’Reilly-Morgan D, Symeonidis P, Tragos EZ, Hurley N, Smyth B, Lawlor A (2020) MP4Rec: explainable and accurate top-N recommendations in heterogeneous information networks. IEEE Access 8:181835–181847CrossRef
46.
go back to reference Chen C, Zhang M, Liu Y, Ma S (2018) Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 world wide web conference, pp 1583–1592 Chen C, Zhang M, Liu Y, Ma S (2018) Neural attentional rating regression with review-level explanations. In: Proceedings of the 2018 world wide web conference, pp 1583–1592
47.
go back to reference Zheng L, Noroozi V, Yu PS (2017) Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the Tenth ACM international conference on web search and data mining, pp 425–434 Zheng L, Noroozi V, Yu PS (2017) Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the Tenth ACM international conference on web search and data mining, pp 425–434
48.
go back to reference Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, pp 4768–4777 Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, pp 4768–4777
50.
go back to reference Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Proceedings of the 34th international conference on machine learning, pp 3145–3153 Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Proceedings of the 34th international conference on machine learning, pp 3145–3153
51.
go back to reference Fernando ZT, Singh J, Anand A (2019) A study on the interpretability of neural retrieval models using DeepSHAP. In: Proceedings of the 42nd international ACM SIGIR conference on research & development in information retrieval, pp 1005–1008 Fernando ZT, Singh J, Anand A (2019) A study on the interpretability of neural retrieval models using DeepSHAP. In: Proceedings of the 42nd international ACM SIGIR conference on research & development in information retrieval, pp 1005–1008
Metadata
Title
An interpretable neural network TV program recommendation based on SHAP
Authors
Fulian Yin
Ruiling Fu
Xiaoli Feng
Tongtong Xing
Meiqi Ji
Publication date
07-05-2023
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 10/2023
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01850-5

Other articles of this Issue 10/2023

International Journal of Machine Learning and Cybernetics 10/2023 Go to the issue