Skip to main content
Top
Published in: Thermal Engineering 10/2019

01-10-2019 | DISTRICT HEATING COGENERATION AND HEAT NETWORKS

An Investigation of Thermal Processes in Insulation with a Thin-Film Coating on Heating Network Piping

Authors: I. A. Zakirova, N. D. Chichirova

Published in: Thermal Engineering | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Piping heat insulation consisting of mineral wool as the main layer and a fiberglass cover is deformed and suffers damages during day-to-day operation. This increases the heat losses through insulation when a heat carrier flows through the pipeline. This investigation is devoted to the use of a thin-film coating (TFC) in the arrangements of existing conventional heat insulation on heating networks to improve the insulation’s effectiveness and reduce the heat losses. The effectiveness of a TFC was evaluated experimentally in a model section of a pipeline that enabled us to simulate actual operating conditions of the piping in a heat supply system. The experiment is based on the determination of heat fluxes flowing through the heat insulation of a pipeline using an infinite cylindrical layer method. To theoretically substantiate the energy-saving effect from the application of a TFC, a numerical investigation of thermal processes occurring within the insulation was performed. Since the considered type of insulation is air-permeable and the permeability depends on the state of the main and cover layers, the effect of convection on heat transfer in the porous insulation with a permeable cover on heating network piping was numerically studied. The effect of a TFC on thermal processes and effectiveness indices was analyzed for two methods of a heating network’s installation: indoors or outdoors. The results demonstrate that it is advisable to use a TFC in the existing heat insulation to improve its effectiveness and reduce thermal energy losses due to a decrease in the heat fluxes by 17% after application of the TFC. The numerical predictions suggest that indoor pipelines should be provided with one TFC layer, while outdoor pipelines should be coated with at least two TFC layers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. A. Bashmakov and A. D. Myshak, “Energy consumption and capacity of the gross regional product in Russia’s regions. Driving with a raised hood,” Energosovet, No. 2, 12–20 (2016). http://www.energosovet.ru/ bul_stat.php?idd=592. I. A. Bashmakov and A. D. Myshak, “Energy consumption and capacity of the gross regional product in Russia’s regions. Driving with a raised hood,” Energosovet, No. 2, 12–20 (2016). http://​www.​energosovet.​ru/​ bul_stat.php?idd=592.
2.
go back to reference S. A. Mikhailov and V. G. Semenov, “Heat supply of the Russian Federation in numbers,” Nov. Teplosnabzh., No. 8 (2002). https://www.rosteplo.ru/Tech_stat/stat_ shablon.php?id=640. S. A. Mikhailov and V. G. Semenov, “Heat supply of the Russian Federation in numbers,” Nov. Teplosnabzh., No. 8 (2002). https://​www.​rosteplo.​ru/​Tech_​stat/​stat_​ shablon.php?id=640.
3.
go back to reference V. A. Ryzhenkov, A. F. Prishchepov, N. A. Loginova, and A. P. Kondrat’ev, “On the effect of a structured thin film heat-insulating coating on the thermal resistance of heat lines,” Energosberezhenie Vodopodgot., No. 5, 58–59 (2010). V. A. Ryzhenkov, A. F. Prishchepov, N. A. Loginova, and A. P. Kondrat’ev, “On the effect of a structured thin film heat-insulating coating on the thermal resistance of heat lines,” Energosberezhenie Vodopodgot., No. 5, 58–59 (2010).
4.
go back to reference V. A. Ryzhenkov, A. G. Parygin, A. F. Prishchepov, and N. A. Loginova, “On improving the efficiency of thermal insulation of pipelines and equipment of domestic heat supply systems,” Energosberezhenie Vodopodgot., No. 6, 48–49 (2009). V. A. Ryzhenkov, A. G. Parygin, A. F. Prishchepov, and N. A. Loginova, “On improving the efficiency of thermal insulation of pipelines and equipment of domestic heat supply systems,” Energosberezhenie Vodopodgot., No. 6, 48–49 (2009).
5.
go back to reference S. M. Kochergin, Thermal Insulation. Materials, Construction, Technology, Handbook (Stroiinform, Moscow, 2008) [in Russian]. S. M. Kochergin, Thermal Insulation. Materials, Construction, Technology, Handbook (Stroiinform, Moscow, 2008) [in Russian].
6.
go back to reference B. M. Shoikhet and L. V. Stavritskaya, “Inspection of the technical condition and reconstruction of thermal insulation of operating main heat pipelines,” Energosberezhenie, No. 3, 60–62 (2002). B. M. Shoikhet and L. V. Stavritskaya, “Inspection of the technical condition and reconstruction of thermal insulation of operating main heat pipelines,” Energosberezhenie, No. 3, 60–62 (2002).
7.
go back to reference V. G. Kuznetsov, I. P. Ozerova, V. Yu. Polovnikov, and Yu. S. Tsygankova, “Evaluation of actual heat loss during transportation of the coolant, taking into account the technical condition and the actual operating conditions of the heating networks,” Izv. Tomsk. Politekh. Univ. 319 (4), 56–60 (2011). V. G. Kuznetsov, I. P. Ozerova, V. Yu. Polovnikov, and Yu. S. Tsygankova, “Evaluation of actual heat loss during transportation of the coolant, taking into account the technical condition and the actual operating conditions of the heating networks,” Izv. Tomsk. Politekh. Univ. 319 (4), 56–60 (2011).
8.
go back to reference A. F. Vasil’ev and D. A. Naumov, “Recommendations for the use of thermal insulation materials and structures for pipelines, equipment and tanks,” Nov. Teplosnabzh., No. 9, 41–48 (2001). A. F. Vasil’ev and D. A. Naumov, “Recommendations for the use of thermal insulation materials and structures for pipelines, equipment and tanks,” Nov. Teplosnabzh., No. 9, 41–48 (2001).
9.
go back to reference I. A. Zakirova and N. D. Chichirova, “Experimental determination of the effectiveness of thermal insulation of thermal networks with thin-film coatings,” Nadezhnost Bezop. Energ. 10 (2), 148–154 (2017). I. A. Zakirova and N. D. Chichirova, “Experimental determination of the effectiveness of thermal insulation of thermal networks with thin-film coatings,” Nadezhnost Bezop. Energ. 10 (2), 148–154 (2017).
10.
go back to reference I. A. Zakirova and N. D. Chichirova, “Improving thermal insulation of heat networks with thin-film coatings,” Tr. Akademenergo, No. 3, 43–57 (2016). I. A. Zakirova and N. D. Chichirova, “Improving thermal insulation of heat networks with thin-film coatings,” Tr. Akademenergo, No. 3, 43–57 (2016).
11.
go back to reference I. A. Zakirova and O. R. Klyuchnikov, “Energy-saving and thermal insulating properties of the thin-film coating based on low temperature cured rubber EPDM-ENB,” Izv. Vyssh. Uchebn. Zaved. Probl. Energ., No. 1–2, 75–78 (2013). I. A. Zakirova and O. R. Klyuchnikov, “Energy-saving and thermal insulating properties of the thin-film coating based on low temperature cured rubber EPDM-ENB,” Izv. Vyssh. Uchebn. Zaved. Probl. Energ., No. 1–2, 75–78 (2013).
12.
go back to reference D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. (Springer-Verlag, New York, 2006).MATH D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. (Springer-Verlag, New York, 2006).MATH
13.
go back to reference T. A. Trifonova and M. A. Sheremet, “Numerical studies of nonstationary regimes of conjugate natural convection in a porous cylindrical region (Darcy–Boussinesq model),” Komp’yut. Issled. Model. 5, 179–191 (2013). T. A. Trifonova and M. A. Sheremet, “Numerical studies of nonstationary regimes of conjugate natural convection in a porous cylindrical region (Darcy–Boussinesq model),” Komp’yut. Issled. Model. 5, 179–191 (2013).
14.
go back to reference A. V. Trofimova and V. G. Tsibulin, “Convective motions in the porous annular sector,” Prikl. Mekh. Tekh. Fiz. 52, 116–125 (2011).MathSciNetMATH A. V. Trofimova and V. G. Tsibulin, “Convective motions in the porous annular sector,” Prikl. Mekh. Tekh. Fiz. 52, 116–125 (2011).MathSciNetMATH
15.
go back to reference O. A. Bessonov and V. A. Brailovskaya, “Spatial model of thermal convection in the gap between horizontal coaxial cylinders with anisotropic porous filling,” Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza, No. 1, 145–155 (2001). O. A. Bessonov and V. A. Brailovskaya, “Spatial model of thermal convection in the gap between horizontal coaxial cylinders with anisotropic porous filling,” Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza, No. 1, 145–155 (2001).
16.
go back to reference V. A. Brailovskaya and G. B. Petrazhitskii, “Thermal and laminar convection of fluid in an annular region at a given heat flux,” Prikl. Mekh. Tekh. Fiz., No. 3, 109–114 (1977). V. A. Brailovskaya and G. B. Petrazhitskii, “Thermal and laminar convection of fluid in an annular region at a given heat flux,” Prikl. Mekh. Tekh. Fiz., No. 3, 109–114 (1977).
17.
go back to reference V. A. Brailovskaya, G. B. Petrazhitskii, and V. I. Polezhaev, “Natural convection and heat transfer in porous layers between horizontal coaxial cylinders,” Prikl. Mekh. Tekh. Fiz., No. 6, 90–96 (1978). V. A. Brailovskaya, G. B. Petrazhitskii, and V. I. Polezhaev, “Natural convection and heat transfer in porous layers between horizontal coaxial cylinders,” Prikl. Mekh. Tekh. Fiz., No. 6, 90–96 (1978).
18.
go back to reference I. A. Zakirova, N. D. Chichirova, and S. R. Saitov, A Program for Calculating Thermal Processes in the Thermal Insulation of Heat Supply Networks with Thin-Film Coating, RF Software Registration Certificate No. 2017663334 (2017). I. A. Zakirova, N. D. Chichirova, and S. R. Saitov, A Program for Calculating Thermal Processes in the Thermal Insulation of Heat Supply Networks with Thin-Film Coating, RF Software Registration Certificate No. 2017663334 (2017).
19.
go back to reference GOST 10704-91. Electrically Welded Steel Line-Weld Tubes (Standartinform, Moscow, 2007). http://docs.cntd.ru/ document/gost-10704-91. GOST 10704-91. Electrically Welded Steel Line-Weld Tubes (Standartinform, Moscow, 2007). http://​docs.​cntd.​ru/​ document/gost-10704-91.
20.
go back to reference SNiP 41-03-2003. Designing of Thermal Insulation of Equipment and Pipe Lines (Gosstroi Rossii, Moscow, 2004). http://docs.cntd.ru/document/1200034564. SNiP 41-03-2003. Designing of Thermal Insulation of Equipment and Pipe Lines (Gosstroi Rossii, Moscow, 2004). http://​docs.​cntd.​ru/​document/​1200034564.​
21.
go back to reference Yu. L. Bobrov, E. G. Ovcharenko, B. M. Shoikhet, and E.Yu. Petukhova, Thermal Insulation Materials and Structures: Textbook (Infra-M, Moscow, 2010) [in Russian]. Yu. L. Bobrov, E. G. Ovcharenko, B. M. Shoikhet, and E.Yu. Petukhova, Thermal Insulation Materials and Structures: Textbook (Infra-M, Moscow, 2010) [in Russian].
Metadata
Title
An Investigation of Thermal Processes in Insulation with a Thin-Film Coating on Heating Network Piping
Authors
I. A. Zakirova
N. D. Chichirova
Publication date
01-10-2019
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 10/2019
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519100070

Other articles of this Issue 10/2019

Thermal Engineering 10/2019 Go to the issue

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Simulation of Heat and Mass Transfer in an Organic Compound Pyrolysis Reactor

Premium Partner