Skip to main content
Top

18-04-2024 | Original Paper

An optimized differential evolution algorithm for constitutive model fitting of arteries

Authors: Sayed Ahmadreza Razian, Majid Jadidi

Published in: Acta Mechanica

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties of arteries are often assessed with biaxial testing. Constitutive models are fitted to the experimental stress-stretch responses to determine relations describing the intrinsic characteristics of the material. Nonlinear least square-based optimization routines and the Levenberg–Marquardt and Trust-Region-Reflective algorithms are commonly used for fitting. But they may not always produce the best fit for the experimental data. We describe a different optimized fitting routine that can significantly improve the constitutive model fit quality. Experimental stress-stretch data were obtained from biaxial testing of 16 human superficial femoral arteries. A metaheuristic population-based algorithm, Differential Evolution (DE), and loss functions based on the Minkowski and Chebyshev Distance functions were used to improve the fit with common constitutive relations. Hyperparameter tuning by grid search method was performed to determine how algorithm settings affect the fit quality. The DE algorithm showed a superior fit in all samples compared to the traditional algorithms. The loss functions based on Minkowski Distance and Chebyshev relations rather than the square error produced better fits. This allows describing the experimental data with simpler constitutive relations that have fewer material parameters, which reduces the complexity and improves the efficiency of computational implementations.
Literature
1.
go back to reference Humphrey, J.D., Dufresne, E.R., Schwartz, M.A.: Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014)CrossRef Humphrey, J.D., Dufresne, E.R., Schwartz, M.A.: Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014)CrossRef
7.
go back to reference Gasser, T.C.: Vascular Biomechanics. (2022) Gasser, T.C.: Vascular Biomechanics. (2022)
11.
go back to reference Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRef Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRef
12.
go back to reference Moré, J.J.: The Levenberg-Marquardt algorithm: Implementation and theory, pp. 105–116. Springer, Berlin Heidelberg, Berlin, Heidelberg (1978) Moré, J.J.: The Levenberg-Marquardt algorithm: Implementation and theory, pp. 105–116. Springer, Berlin Heidelberg, Berlin, Heidelberg (1978)
15.
go back to reference Li, D.S., Avazmohammadi, R., Merchant, S.S., Kawamura, T., Hsu, E.W., Gorman, J.H., Gorman, R.C., Sacks, M.S.: Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics. J. Mech. Behav. Biomed. Mater. 103, 103508 (2020). https://doi.org/10.1016/J.JMBBM.2019.103508CrossRef Li, D.S., Avazmohammadi, R., Merchant, S.S., Kawamura, T., Hsu, E.W., Gorman, J.H., Gorman, R.C., Sacks, M.S.: Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics. J. Mech. Behav. Biomed. Mater. 103, 103508 (2020). https://​doi.​org/​10.​1016/​J.​JMBBM.​2019.​103508CrossRef
16.
18.
go back to reference Jadidi, M., Desyatova, A., MacTaggart, J., Kamenskiy, A.: Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state. Biomech. Model. Mechanobiol. 18, 1591–1605 (2019). https://doi.org/10.1007/s10237-019-01162-0CrossRef Jadidi, M., Desyatova, A., MacTaggart, J., Kamenskiy, A.: Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state. Biomech. Model. Mechanobiol. 18, 1591–1605 (2019). https://​doi.​org/​10.​1007/​s10237-019-01162-0CrossRef
19.
go back to reference Delfino, A.: Analysis of stress field in a model of the human carotid bifurcation, (1996) Delfino, A.: Analysis of stress field in a model of the human carotid bifurcation, (1996)
20.
go back to reference Demiray, H., Weizsacker, H.W., Pascale, K., Erbay, H.A.: A stress-strain relation for a rat abdominal aorta. J. Biomech. 21, 369–374 (1988)CrossRef Demiray, H., Weizsacker, H.W., Pascale, K., Erbay, H.A.: A stress-strain relation for a rat abdominal aorta. J. Biomech. 21, 369–374 (1988)CrossRef
21.
go back to reference Holzapfel, G.A., Gasser, T.C., Ogden, R.W., W, O.R.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity. 61, 1–48 (2000)MathSciNetCrossRef Holzapfel, G.A., Gasser, T.C., Ogden, R.W., W, O.R.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity. 61, 1–48 (2000)MathSciNetCrossRef
26.
go back to reference Humphrey, J.D.: Cardiovascular solid mechanics : cells, tissues, and organs. Springer, New York, NY (2013) Humphrey, J.D.: Cardiovascular solid mechanics : cells, tissues, and organs. Springer, New York, NY (2013)
31.
go back to reference Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetCrossRef Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetCrossRef
39.
go back to reference Humphrey, J.D.: An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics. (1999) Humphrey, J.D.: An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics. (1999)
42.
go back to reference Yan, Z., Zhong, S., Lin, L., Cui, Z., Alonso, R., Bustos Caballero, A., Meneses Alonso, J., Soriano-Heras, E.: Adaptive Levenberg–Marquardt algorithm: a new optimization strategy for Levenberg–Marquardt neural networks. Mathematics 9, 2176 (2021). https://doi.org/10.3390/MATH9172176CrossRef Yan, Z., Zhong, S., Lin, L., Cui, Z., Alonso, R., Bustos Caballero, A., Meneses Alonso, J., Soriano-Heras, E.: Adaptive Levenberg–Marquardt algorithm: a new optimization strategy for Levenberg–Marquardt neural networks. Mathematics 9, 2176 (2021). https://​doi.​org/​10.​3390/​MATH9172176CrossRef
53.
go back to reference Dennis, J., Environments, D.W.-N. computing, 1987, U.: Optimization on microcomputers: The Nelder-Mead simplex algorithm. (1987) Dennis, J., Environments, D.W.-N. computing, 1987, U.: Optimization on microcomputers: The Nelder-Mead simplex algorithm. (1987)
54.
go back to reference Polzer, S., Gasser, T.C., Novak, K., Man, V., Tichy, M., Skacel, P., Bursa, J.: Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 14, 133–145 (2015)CrossRef Polzer, S., Gasser, T.C., Novak, K., Man, V., Tichy, M., Skacel, P., Bursa, J.: Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 14, 133–145 (2015)CrossRef
55.
go back to reference Avazmohammadi, R., Mendiola, E.A., Li, D.S., Vanderslice, P., Dixon, R.A.F., Sacks, M.S.: Interactions between structural remodeling and hypertrophy in the right ventricle in response to pulmonary arterial hypertension. J. Biomech. Eng. (2019). https://doi.org/10.1115/14044174CrossRef Avazmohammadi, R., Mendiola, E.A., Li, D.S., Vanderslice, P., Dixon, R.A.F., Sacks, M.S.: Interactions between structural remodeling and hypertrophy in the right ventricle in response to pulmonary arterial hypertension. J. Biomech. Eng. (2019). https://​doi.​org/​10.​1115/​14044174CrossRef
56.
go back to reference Avazmohammadi, R., Li, D.S., Leahy, T., Shih, E., Soares, J.S., Gorman, J.H., Gorman, R.C., Sacks, M.S.: An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech. Model. Mechanobiol. 17, 31–53 (2018). https://doi.org/10.1007/s10237-017-0943-1CrossRef Avazmohammadi, R., Li, D.S., Leahy, T., Shih, E., Soares, J.S., Gorman, J.H., Gorman, R.C., Sacks, M.S.: An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech. Model. Mechanobiol. 17, 31–53 (2018). https://​doi.​org/​10.​1007/​s10237-017-0943-1CrossRef
Metadata
Title
An optimized differential evolution algorithm for constitutive model fitting of arteries
Authors
Sayed Ahmadreza Razian
Majid Jadidi
Publication date
18-04-2024
Publisher
Springer Vienna
Published in
Acta Mechanica
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-024-03936-9

Premium Partners