Skip to main content
Top

2020 | OriginalPaper | Chapter

2. An Optothermal Field Effect Transistor Based on PMN-26PT Single Crystal

Author : Dr. Huajing Fang

Published in: Novel Devices Based on Relaxor Ferroelectric PMN-PT Single Crystals

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At the end of the nineteenth century, Boolean discovered that logical thinking can be presented in mathematical expressions [1]. Later, John Atanasoff and Claude Shannon advocated the use of binary circuits to implement Boolean logic operations [2]. The transistor is the underlying component that implements the three basic logic gates AND, OR and NOT. It has been studied for about 90 years, dating back to 1925. At that time, German scientist Julius Lilienfeld had proposed to apply a strong electric field to control the charge carriers on the semiconductor surface [3], the idea of adjust the channel conductivity by electric field has been applied for a patent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liao ZW, Zhang JW (1984) Logical algebra [M]. Science Press Liao ZW, Zhang JW (1984) Logical algebra [M]. Science Press
2.
go back to reference Regan GO (2013) Giants of computing. Springer, London Regan GO (2013) Giants of computing. Springer, London
3.
go back to reference Hu WP (2006) Transistor. Chem Bull 5:372–381 Hu WP (2006) Transistor. Chem Bull 5:372–381
4.
go back to reference Brunco DP, De Jaeger B, Eneman G et al (2008) Germanium MOSFET devices: advances in materials understanding, process development, and electrical performance. J Electrochem Soc 155:H552–H561CrossRef Brunco DP, De Jaeger B, Eneman G et al (2008) Germanium MOSFET devices: advances in materials understanding, process development, and electrical performance. J Electrochem Soc 155:H552–H561CrossRef
5.
go back to reference Adinolfi V, Sargent EH (2017) Photovoltage field-effect transistors. Nature 542:324–327CrossRef Adinolfi V, Sargent EH (2017) Photovoltage field-effect transistors. Nature 542:324–327CrossRef
6.
go back to reference Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451CrossRef Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451CrossRef
7.
go back to reference Torsi L, Magliulo M, Manoli K et al (2013) Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev 42:8612–8628CrossRef Torsi L, Magliulo M, Manoli K et al (2013) Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev 42:8612–8628CrossRef
8.
go back to reference Georgiou T, Jalil R, Belle BD et al (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103CrossRef Georgiou T, Jalil R, Belle BD et al (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103CrossRef
9.
go back to reference Bao ZN, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69:4108–4110CrossRef Bao ZN, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69:4108–4110CrossRef
10.
go back to reference Yang YP, Hu CK, Hu JH et al (2014) Photoelectric technology [M]. China Machine Press Yang YP, Hu CK, Hu JH et al (2014) Photoelectric technology [M]. China Machine Press
11.
go back to reference Zhang LJ (2016) Fabrication and optical property study of (2+1)D photonic crystal structure. Doctoral thesis, Tsinghua University Zhang LJ (2016) Fabrication and optical property study of (2+1)D photonic crystal structure. Doctoral thesis, Tsinghua University
12.
go back to reference Xu H, Li J, Leung BHK et al (2013) A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5:11850–11855CrossRef Xu H, Li J, Leung BHK et al (2013) A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5:11850–11855CrossRef
13.
go back to reference Nam HJ, Cha J, Lee SH et al (2014) A new mussel-inspired polydopamine phototransistor with high photosensitivity: signal amplification and light-controlled switching properties. Chem Commun 50:1458–1461CrossRef Nam HJ, Cha J, Lee SH et al (2014) A new mussel-inspired polydopamine phototransistor with high photosensitivity: signal amplification and light-controlled switching properties. Chem Commun 50:1458–1461CrossRef
14.
go back to reference Rim YS, Yang YM, Bae SH et al (2015) Ultrahigh and broad spectral photodetectivity of an organic-inorganic hybrid phototransistor for flexible electronics. Adv Mater 27:6885–6891CrossRef Rim YS, Yang YM, Bae SH et al (2015) Ultrahigh and broad spectral photodetectivity of an organic-inorganic hybrid phototransistor for flexible electronics. Adv Mater 27:6885–6891CrossRef
15.
go back to reference Huang Y, Deng HX, Xu K et al (2015) Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7:14093–14099CrossRef Huang Y, Deng HX, Xu K et al (2015) Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7:14093–14099CrossRef
16.
go back to reference Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J et al (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30CrossRef Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J et al (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30CrossRef
17.
go back to reference Tao L, Cinquanta E, Chiappe D et al (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227–231CrossRef Tao L, Cinquanta E, Chiappe D et al (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227–231CrossRef
18.
go back to reference Lee GH, Yu YJ, Cui X et al (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7:7931–7936CrossRef Lee GH, Yu YJ, Cui X et al (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7:7931–7936CrossRef
19.
go back to reference Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRef Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRef
20.
go back to reference Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798CrossRef Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798CrossRef
21.
go back to reference Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRef Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRef
22.
go back to reference Woodward RI, Kelleher EJR, Howe RCT et al (2014) Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt Express 22:31113–31122CrossRef Woodward RI, Kelleher EJR, Howe RCT et al (2014) Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt Express 22:31113–31122CrossRef
23.
go back to reference Zeng H, Dai J, Yao W et al (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490–493CrossRef Zeng H, Dai J, Yao W et al (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490–493CrossRef
24.
go back to reference Tongay S, Zhou J, Ataca C et al (2013) Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13:2831–2836CrossRef Tongay S, Zhou J, Ataca C et al (2013) Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13:2831–2836CrossRef
25.
go back to reference Çakır D, Sevik C, Peeters FM (2014) Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers. J Mater Chem C 2:9842–9849CrossRef Çakır D, Sevik C, Peeters FM (2014) Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers. J Mater Chem C 2:9842–9849CrossRef
26.
go back to reference Xu K, Huang Y, Chen B et al (2016) Toward high-performance top-gate ultrathin HfS2 field-effect transistors by interface engineering. Small 12:3106–3111CrossRef Xu K, Huang Y, Chen B et al (2016) Toward high-performance top-gate ultrathin HfS2 field-effect transistors by interface engineering. Small 12:3106–3111CrossRef
27.
go back to reference Yu Z, Ong ZY, Pan Y et al (2016) Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv Mater 28:547–552CrossRef Yu Z, Ong ZY, Pan Y et al (2016) Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv Mater 28:547–552CrossRef
28.
go back to reference Li Y, Xu CY, Hu P et al (2013) Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 7:7795–7804CrossRef Li Y, Xu CY, Hu P et al (2013) Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 7:7795–7804CrossRef
29.
go back to reference Najmaei S, Zou X, Er D et al (2014) Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett 14:1354–1361CrossRef Najmaei S, Zou X, Er D et al (2014) Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett 14:1354–1361CrossRef
30.
go back to reference Duan X, Wang C, Pan A et al (2015) Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 44:859–8876 Duan X, Wang C, Pan A et al (2015) Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 44:859–8876
31.
go back to reference Fang HJ, Lin ZY, Wang XS et al (2015) Infrared light gated MoS2 field effect transistor. Opt Express 23:31908–31914CrossRef Fang HJ, Lin ZY, Wang XS et al (2015) Infrared light gated MoS2 field effect transistor. Opt Express 23:31908–31914CrossRef
32.
go back to reference Wang CL, Li JC, Zhao ML (2009) Physics of piezoelectrics and ferroelectrics [M]. Science Press Wang CL, Li JC, Zhao ML (2009) Physics of piezoelectrics and ferroelectrics [M]. Science Press
33.
go back to reference Tang YX (2007) Novel pyroelectric materials and their applications in infrared devices, Doctoral thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences Tang YX (2007) Novel pyroelectric materials and their applications in infrared devices, Doctoral thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences
34.
go back to reference Zhang YY, Zhang J (2012) Application of resonance Raman spectroscopy in the characterization of single-walled carbon nanotubes. Acta Chim Sinica 70:2293–2305CrossRef Zhang YY, Zhang J (2012) Application of resonance Raman spectroscopy in the characterization of single-walled carbon nanotubes. Acta Chim Sinica 70:2293–2305CrossRef
35.
go back to reference Luo NN (2015) Design and crystal growth of complex perovskite relaxor ferroelectrics with high Trt. Doctoral thesis, Tsinghua University Luo NN (2015) Design and crystal growth of complex perovskite relaxor ferroelectrics with high Trt. Doctoral thesis, Tsinghua University
36.
go back to reference Shao SP (1994) Pyroelectric effect and its application [M]. Ordnance Industry Press Shao SP (1994) Pyroelectric effect and its application [M]. Ordnance Industry Press
37.
go back to reference Wang X, Feng H, Wu Y et al (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef Wang X, Feng H, Wu Y et al (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef
38.
go back to reference Lee C, Yan H, Brus LE et al (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700CrossRef Lee C, Yan H, Brus LE et al (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700CrossRef
39.
go back to reference Li H, Zhang Q, Yap CCR et al (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390CrossRef Li H, Zhang Q, Yap CCR et al (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390CrossRef
40.
go back to reference Duan X, Wang C, Fan Z et al (2015) Synthesis of WS2x Se2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett 16:264–269CrossRef Duan X, Wang C, Fan Z et al (2015) Synthesis of WS2x Se2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett 16:264–269CrossRef
41.
go back to reference Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef
42.
go back to reference Deng Y, Luo Z, Conrad NJ et al (2014) Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8:8292–8299CrossRef Deng Y, Luo Z, Conrad NJ et al (2014) Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8:8292–8299CrossRef
43.
go back to reference Black CT, Farrell C, Licata TJ (1997) Suppression of ferroelectric polarization by an adjustable depolarization field. Appl Phys Lett 71:2041–2043CrossRef Black CT, Farrell C, Licata TJ (1997) Suppression of ferroelectric polarization by an adjustable depolarization field. Appl Phys Lett 71:2041–2043CrossRef
44.
go back to reference Ko C, Lee Y, Chen Y et al (2016) Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv Mater 28:2923–2930CrossRef Ko C, Lee Y, Chen Y et al (2016) Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv Mater 28:2923–2930CrossRef
45.
go back to reference Neamen DH (2003) Semiconductor physics and devices, 3rd edn. McGraw-Hill higher education Neamen DH (2003) Semiconductor physics and devices, 3rd edn. McGraw-Hill higher education
46.
go back to reference Assadi A, Svensson C, Willander M et al (1988) Field-effect mobility of poly(3-hexylthiophene). Appl Phys Lett 53:195–197CrossRef Assadi A, Svensson C, Willander M et al (1988) Field-effect mobility of poly(3-hexylthiophene). Appl Phys Lett 53:195–197CrossRef
Metadata
Title
An Optothermal Field Effect Transistor Based on PMN-26PT Single Crystal
Author
Dr. Huajing Fang
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4312-8_2

Premium Partners