Skip to main content
Top

2019 | OriginalPaper | Chapter

8. An Overview of Current Trends in Emergence of Nanomaterials for Sustainable Microbial Fuel Cells

Authors : Gunaseelan Kuppurangam, Gajalakshmi Selvaraj, Thirumurugan Ramasamy, Vignesh Venkatasamy, Sathish-Kumar Kamaraj

Published in: Emerging Nanostructured Materials for Energy and Environmental Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microbial fuel cell (MFC) technologies have been globally noticed as one of the most promising sources for alternative renewable energy, due to its capability of transforming the organics in the wastewater directly into electricity through catalytic reactions of microorganisms under anaerobic conditions. In this chapter, the state of the art of review on the various emerging technological aspects of nanotechnology for the development of nanomaterials to make the existing microbial fuel cell technology as more sustainable and reliable in order to serve the growing energy demand. Initially, a brief history of the development and the current trends of the microbial fuel cells along with its basic working mechanism, basic designs, components, fascinating derivative forms, performance evaluation, challenges and synergetic applications have been presented. Then the focus is shifted to the importance of incorporation of the nanomaterials for the sustainable development of MFC technology by means of advancements through anode, cathode, and proton exchange membranes modifications along with the various ultimate doping methods. The possibilities of applied nanomaterials and its derivatives in various places in MFCs are discussed. The nanomaterials in MFCs have a significant contribution to the increased power density, treatment efficiency, durability, and product recovery due to its higher electrochemical surface area phenomenon, depending on the fuel cell components to get modified. The promising research results open the way for the usage of nanomaterials as a prospective material for application and development of sustainable microbial fuel cells. Though the advances in nanomaterials have opened up new promises to overcome several limitations, but challenges still remain for the real-time and large-scale applications. Finally, an outlook for the future development and scaling up of sustainable MFCs with the nanotechnology is presented with some suggestions and limitations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bard AJ, Faulkner LR, Swain E, Robey C (2000) Electrochemical methods fundamentals and applications Bard AJ, Faulkner LR, Swain E, Robey C (2000) Electrochemical methods fundamentals and applications
go back to reference Bhunia P, Dutta K (2018) Biochemistry and electrochemistry at the electrodes of microbial fuel cells. Elsevier B.V Bhunia P, Dutta K (2018) Biochemistry and electrochemistry at the electrodes of microbial fuel cells. Elsevier B.V
go back to reference Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39(6):2184CrossRef Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39(6):2184CrossRef
go back to reference Chang IS, Moon H, Bretschger O et al (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177 Chang IS, Moon H, Bretschger O et al (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177
go back to reference Cheng S, Hamelers HVM (2008) Critical review microbial electrolysis cells for high yield hydrogen gas production from organic matter. 42 Cheng S, Hamelers HVM (2008) Critical review microbial electrolysis cells for high yield hydrogen gas production from organic matter. 42
go back to reference Chia MA (2002) Miniatured microbial fuel cell. Technical digest of solid state sensors and actuators workshop, Hilton Head Island, pp 59–60 Chia MA (2002) Miniatured microbial fuel cell. Technical digest of solid state sensors and actuators workshop, Hilton Head Island, pp 59–60
go back to reference Choi Y, Jung E, Kim S, Jung S (2003) Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry 59(1–2):121–127CrossRef Choi Y, Jung E, Kim S, Jung S (2003) Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry 59(1–2):121–127CrossRef
go back to reference Das S, Mangwani N (2010) Recent developments in microbial fuel cells: a review. J Sci Ind Res (India) 69:727–731 Das S, Mangwani N (2010) Recent developments in microbial fuel cells: a review. J Sci Ind Res (India) 69:727–731
go back to reference Habermann W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35(1) Habermann W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35(1)
go back to reference Hassan M, Wei H, Qiu H, Su Y, Jaafry SWH, Zhan L, Xie B (2018) Power generation and pollutants removal from landfill leachate in microbial fuel cell: variation and influence of anodic microbiomes. Bioresour Technol 247:434–442CrossRef Hassan M, Wei H, Qiu H, Su Y, Jaafry SWH, Zhan L, Xie B (2018) Power generation and pollutants removal from landfill leachate in microbial fuel cell: variation and influence of anodic microbiomes. Bioresour Technol 247:434–442CrossRef
go back to reference Kano K et al (1999) Bifidobacterium longum. Biochim Biophys Acta 1428:241–250CrossRef Kano K et al (1999) Bifidobacterium longum. Biochim Biophys Acta 1428:241–250CrossRef
go back to reference Labelle E, Bond DR (2009) Cyclic voltammetry for the study of microbial electron transfer at electrodes. Bioelectrochemical Syst Extracell Electron Transf Biotechnol Appl 137–152 Labelle E, Bond DR (2009) Cyclic voltammetry for the study of microbial electron transfer at electrodes. Bioelectrochemical Syst Extracell Electron Transf Biotechnol Appl 137–152
go back to reference Liu Y, Liu H, Wang C et al (2013b) Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene cathode. Environ Sci 47:13889–13895CrossRef Liu Y, Liu H, Wang C et al (2013b) Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene cathode. Environ Sci 47:13889–13895CrossRef
go back to reference Menicucci J, Beyenal H, Marsili E, Veluchamy GD, Lewandowski Z (2006) Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol 40(3):1062–1068CrossRef Menicucci J, Beyenal H, Marsili E, Veluchamy GD, Lewandowski Z (2006) Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol 40(3):1062–1068CrossRef
go back to reference Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686CrossRef Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686CrossRef
go back to reference Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873CrossRef Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873CrossRef
go back to reference Oh S-E, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70(2):162–169CrossRef Oh S-E, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70(2):162–169CrossRef
go back to reference Park DH, Laivenieks M, Guettler MV et al (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917 Park DH, Laivenieks M, Guettler MV et al (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917
go back to reference Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134CrossRef Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134CrossRef
go back to reference Pham TH, Jang JK, Chang IS, Kim BH (2004) Improvement of cathode reaction of a mediatorless microbial fuel cell. J Microbiol Biotechnol 14:324–329 Pham TH, Jang JK, Chang IS, Kim BH (2004) Improvement of cathode reaction of a mediatorless microbial fuel cell. J Microbiol Biotechnol 14:324–329
go back to reference Ringeisen BR, Henderson E, Peter KW, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using DSP10. Environ Sci Technol 40(8):2629–2634CrossRef Ringeisen BR, Henderson E, Peter KW, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using DSP10. Environ Sci Technol 40(8):2629–2634CrossRef
go back to reference Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed 42(25):2880–2883 Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed 42(25):2880–2883
go back to reference Tekle Y, Demeke A (2015) Review on microbial fuel cell. Basic Res J Microbiol 1:1–32 Tekle Y, Demeke A (2015) Review on microbial fuel cell. Basic Res J Microbiol 1:1–32
go back to reference Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Controlled production of aligned-nanotube bundles. Nature 388(6637):52–55CrossRef Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Controlled production of aligned-nanotube bundles. Nature 388(6637):52–55CrossRef
go back to reference Thygesen A, Poulsen FW, Min B, Angelidaki I, Thomsen AB (2009) The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresour Technol 100(3):1186–1191CrossRef Thygesen A, Poulsen FW, Min B, Angelidaki I, Thomsen AB (2009) The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresour Technol 100(3):1186–1191CrossRef
go back to reference Turick CE, Tisa LS, Caccavo F (2002) Melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal E. Appl Environ Microbiol 68:2436–2444. https://doi.org/10.1128/AEM.68.5.2436 CrossRef Turick CE, Tisa LS, Caccavo F (2002) Melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal E. Appl Environ Microbiol 68:2436–2444. https://​doi.​org/​10.​1128/​AEM.​68.​5.​2436 CrossRef
go back to reference Vega CA, Fernández I (1987) Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochem Bioenerg 17(2):217–222CrossRef Vega CA, Fernández I (1987) Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochem Bioenerg 17(2):217–222CrossRef
Metadata
Title
An Overview of Current Trends in Emergence of Nanomaterials for Sustainable Microbial Fuel Cells
Authors
Gunaseelan Kuppurangam
Gajalakshmi Selvaraj
Thirumurugan Ramasamy
Vignesh Venkatasamy
Sathish-Kumar Kamaraj
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04474-9_8