Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

13-02-2019

An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications

Authors: S. Ramya, I. Srinivasa Rao

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple metamaterial absorber with ultra-thin structure has been proposed for X-band applications with enhanced absorption bandwidth. The proposed structure comprises of circular rings embedded in L-shaped resonators. This ultra-thin structure (0.0420λ0 thick with respect to the center frequency of the operating bandwidth) exhibits wide absorption of 2.3 GHz above 90% absorptivity from 9.4 to 11.7 GHz. The designed structure was tested for different polarization for transverse electric mode under normal and oblique angles of electromagnetic wave incidence. It is polarization sensitive because of its asymmetrical design, and has diverse impacts on absorption at various incidence angles. The electromagnetic fields and surface current distributions were analysed to understand the high absorption of the presented metamaterial absorber. The proposed structure has been fabricated and the experimental responses were matched closely with the simulated responses. This metamaterial absorber will be suitable for applications like stealth technology in X-band frequencies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184.CrossRef Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184.CrossRef
2.
go back to reference Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100, 207402.CrossRef Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100, 207402.CrossRef
3.
go back to reference Bilotti, F., Nucci, L., & Vegni, L. (2006). An SRR based microwave absorber. Microwave and Optical Technology Letters, 48, 2171–2175.CrossRef Bilotti, F., Nucci, L., & Vegni, L. (2006). An SRR based microwave absorber. Microwave and Optical Technology Letters, 48, 2171–2175.CrossRef
4.
go back to reference Li, L. W., Li, Y. N., Yeo, T. S., Mosig, J. R., & Martin, O. J. (2010). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 96, 164101.CrossRef Li, L. W., Li, Y. N., Yeo, T. S., Mosig, J. R., & Martin, O. J. (2010). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 96, 164101.CrossRef
5.
go back to reference Arora, Chirag, Pattnaik, Shyam S., & Baral, R. N. (2017). Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using metamaterial inspired technique. International Journal of Electronics and Communications, 79, 124–131.CrossRef Arora, Chirag, Pattnaik, Shyam S., & Baral, R. N. (2017). Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using metamaterial inspired technique. International Journal of Electronics and Communications, 79, 124–131.CrossRef
6.
go back to reference Cai, W., Chettiar, U. K., Kildishev, A. V., & Shalaev, V. M. (2007). Optical cloaking with materials. Nature photonics, 1, 224–227.CrossRef Cai, W., Chettiar, U. K., Kildishev, A. V., & Shalaev, V. M. (2007). Optical cloaking with materials. Nature photonics, 1, 224–227.CrossRef
7.
go back to reference Li, H., Yuan, L. H., Zhou, B., Shen, X. P., Cheng, Q., & Cui, T. J. (2011). Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 110, 014909.CrossRef Li, H., Yuan, L. H., Zhou, B., Shen, X. P., Cheng, Q., & Cui, T. J. (2011). Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 110, 014909.CrossRef
8.
go back to reference Zhang, N., Zhou, P., Cheng, D., Weng, X., Xie, J., & Deng, L. (2013). Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Optics Letters, 38, 1125–1127.CrossRef Zhang, N., Zhou, P., Cheng, D., Weng, X., Xie, J., & Deng, L. (2013). Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Optics Letters, 38, 1125–1127.CrossRef
9.
go back to reference Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Optics Express, 16, 7181–7188.CrossRef Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Optics Express, 16, 7181–7188.CrossRef
10.
go back to reference Soheilifar, M. R., Sadeghzadeh, R. A., & Gobadi, H. (2014). Design and fabrication of a metamaterial absorber in the microwave range. Microwave and Optical Technology Letters, 56, 1748–1752.CrossRef Soheilifar, M. R., Sadeghzadeh, R. A., & Gobadi, H. (2014). Design and fabrication of a metamaterial absorber in the microwave range. Microwave and Optical Technology Letters, 56, 1748–1752.CrossRef
11.
go back to reference Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., & Lu, W. (2013). A dual-band polarization insensitive metamaterial absorber with split ring resonator. Optical and Quantum Electronics, 45, 747–753.CrossRef Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., & Lu, W. (2013). A dual-band polarization insensitive metamaterial absorber with split ring resonator. Optical and Quantum Electronics, 45, 747–753.CrossRef
12.
go back to reference Ramya, S., & Rao, I. S. (2016). Design of polarization-insensitive dual band metamaterial absorber. Progress In Electromagnetics Research M, 50, 23–31.CrossRef Ramya, S., & Rao, I. S. (2016). Design of polarization-insensitive dual band metamaterial absorber. Progress In Electromagnetics Research M, 50, 23–31.CrossRef
13.
go back to reference Yoo, Y. J., Kim, Y. J., Hwang, J. S., Rhee, J. Y., Kim, K. W., Kim, Y. H., et al. (2015). Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters, 106, 071105.CrossRef Yoo, Y. J., Kim, Y. J., Hwang, J. S., Rhee, J. Y., Kim, K. W., Kim, Y. H., et al. (2015). Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters, 106, 071105.CrossRef
14.
go back to reference Bhattacharya, A., Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Vaibhav Srivastava, K. (2015). An ultrathin penta-band polarization-insensitive compact metamaterial absorber for airborne radar applications. Microwave and Optical Technology Letters, 57, 2519–2524.CrossRef Bhattacharya, A., Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Vaibhav Srivastava, K. (2015). An ultrathin penta-band polarization-insensitive compact metamaterial absorber for airborne radar applications. Microwave and Optical Technology Letters, 57, 2519–2524.CrossRef
15.
go back to reference Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electronics Letters, 47, 8–9.CrossRef Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electronics Letters, 47, 8–9.CrossRef
16.
go back to reference Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Srivastava, K. V. (2015). Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Applied Physics A, 118, 207–215.CrossRef Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Srivastava, K. V. (2015). Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Applied Physics A, 118, 207–215.CrossRef
17.
go back to reference Li, L., Wang, J., Du, H., Wang, J., Qu, S., & Xu, Z. (2015). A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Advances, 5, 017147.CrossRef Li, L., Wang, J., Du, H., Wang, J., Qu, S., & Xu, Z. (2015). A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Advances, 5, 017147.CrossRef
18.
go back to reference Sood, D., & Tripathi, C. C. (2016). A wideband wide-angle ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 58, 1131–1135.CrossRef Sood, D., & Tripathi, C. C. (2016). A wideband wide-angle ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 58, 1131–1135.CrossRef
19.
go back to reference Ramya, S., & Srinivasa Rao, I. (2017). A compact ultra-thin ultrawideband microwave metamaterial absorber. Microwave and Optical Technology Letters, 59, 1837–1845.CrossRef Ramya, S., & Srinivasa Rao, I. (2017). A compact ultra-thin ultrawideband microwave metamaterial absorber. Microwave and Optical Technology Letters, 59, 1837–1845.CrossRef
20.
go back to reference Zhou, W., Wang, P., Wang, N., Jiang, W., Dong, X., & Hu, S. (2015). Microwave metamaterial absorber based on multiple square ring structures. AIP Advances, 5, 117109.CrossRef Zhou, W., Wang, P., Wang, N., Jiang, W., Dong, X., & Hu, S. (2015). Microwave metamaterial absorber based on multiple square ring structures. AIP Advances, 5, 117109.CrossRef
21.
go back to reference Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Wide-angle quad-band polarisation-insensitive metamaterial absorber. Electronics Lett, 52, 340–342.CrossRef Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Wide-angle quad-band polarisation-insensitive metamaterial absorber. Electronics Lett, 52, 340–342.CrossRef
22.
go back to reference Ghosh, S., Bhattacharyya, S., Kaiprath, Y., & Vaibhav Srivastava, K. (2014). Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 115, 104503.CrossRef Ghosh, S., Bhattacharyya, S., Kaiprath, Y., & Vaibhav Srivastava, K. (2014). Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 115, 104503.CrossRef
23.
go back to reference Zhai, H., Zhan, C., Li, Z., & Liang, C. (2015). A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas and Wireless Propagation Letters, 14, 241–244.CrossRef Zhai, H., Zhan, C., Li, Z., & Liang, C. (2015). A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas and Wireless Propagation Letters, 14, 241–244.CrossRef
24.
go back to reference Sood, D., & Tripathi, C. C. (2015). A wideband ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 57, 2723–2728.CrossRef Sood, D., & Tripathi, C. C. (2015). A wideband ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 57, 2723–2728.CrossRef
25.
go back to reference Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber. Applied Physics A, 122, 1–9. Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber. Applied Physics A, 122, 1–9.
26.
go back to reference Sood, D., & Tripathi, C. C. (2016). Broadband ultrathin low-profile metamaterial microwave absorber. Applied Physics A, 122, 1–7.CrossRef Sood, D., & Tripathi, C. C. (2016). Broadband ultrathin low-profile metamaterial microwave absorber. Applied Physics A, 122, 1–7.CrossRef
27.
go back to reference Sood, D., & Tripathi, C. C. (2017). A compact ultrathin ultra-wideband metamaterial microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16, 514–528.CrossRef Sood, D., & Tripathi, C. C. (2017). A compact ultrathin ultra-wideband metamaterial microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16, 514–528.CrossRef
28.
go back to reference Xu, G., Huang, J., Ju, Z., Wei, Z., Li, J., & Zhao, Q. (2017). A novel six-band polarization-insensitive metamaterial absorber with four multiple-mode resonators. Progress In Electromagnetics Research C, 77, 133–144.CrossRef Xu, G., Huang, J., Ju, Z., Wei, Z., Li, J., & Zhao, Q. (2017). A novel six-band polarization-insensitive metamaterial absorber with four multiple-mode resonators. Progress In Electromagnetics Research C, 77, 133–144.CrossRef
Metadata
Title
An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications
Authors
S. Ramya
I. Srinivasa Rao
Publication date
13-02-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06163-x

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue