Skip to main content
Top
Published in: Computational Mechanics 5/2018

22-01-2018 | Original Paper

An uncertainty model of acoustic metamaterials with random parameters

Authors: Z. C. He, J. Y. Hu, Eric Li

Published in: Computational Mechanics | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lu L, Yamamoto T, Otomori M, Yamada T, Izui K, Nishiwaki S (2013) Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elem Anal Des 72:1–12MathSciNetCrossRef Lu L, Yamamoto T, Otomori M, Yamada T, Izui K, Nishiwaki S (2013) Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elem Anal Des 72:1–12MathSciNetCrossRef
2.
go back to reference Oudich M, Djafari-Rouhani B, Pennec Y, Assouar MB, Bonello B (2014) Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars. J Appl Phys 116:377 Oudich M, Djafari-Rouhani B, Pennec Y, Assouar MB, Bonello B (2014) Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars. J Appl Phys 116:377
3.
go back to reference Pai PF, Peng H (2014) Acoustic metamaterial structures based on multi-frequency vibration absorbers. International Society for Optics and Photonics, Bellingham Pai PF, Peng H (2014) Acoustic metamaterial structures based on multi-frequency vibration absorbers. International Society for Optics and Photonics, Bellingham
4.
go back to reference Liang Z, Li J (2012) Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 108:114301CrossRef Liang Z, Li J (2012) Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 108:114301CrossRef
5.
go back to reference Krushynska AO, Kouznetsova VG, Geers MGD (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids 71:179–196CrossRef Krushynska AO, Kouznetsova VG, Geers MGD (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids 71:179–196CrossRef
6.
go back to reference Peng H, Pai PF, Peng H (2014) Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int J Mech Sci 89:350–361CrossRef Peng H, Pai PF, Peng H (2014) Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int J Mech Sci 89:350–361CrossRef
7.
go back to reference Assouar B, Oudich M, Zhou X (2016) Acoustic metamaterials for sound mitigation. C R Phys 17:524–532CrossRef Assouar B, Oudich M, Zhou X (2016) Acoustic metamaterials for sound mitigation. C R Phys 17:524–532CrossRef
8.
go back to reference Seddon N, Bearpark T (2003) Observation of the inverse Doppler effect. Science 302:1537–1540CrossRef Seddon N, Bearpark T (2003) Observation of the inverse Doppler effect. Science 302:1537–1540CrossRef
9.
go back to reference Alu A, Engheta N (2008) Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A Pure Appl Opt 10:93002-18(17)CrossRef Alu A, Engheta N (2008) Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A Pure Appl Opt 10:93002-18(17)CrossRef
10.
go back to reference Nouh M, Aldraihem O, Baz A (2015) Wave propagation in metamaterial plates with periodic local resonances. J Sound Vib 341:53–73CrossRef Nouh M, Aldraihem O, Baz A (2015) Wave propagation in metamaterial plates with periodic local resonances. J Sound Vib 341:53–73CrossRef
11.
go back to reference Zhu R, Liu XN, Hu GK, Sun CT, Huang GL (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333:2759–2773CrossRef Zhu R, Liu XN, Hu GK, Sun CT, Huang GL (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333:2759–2773CrossRef
12.
go back to reference Zhang S (2010) Acoustic metamaterial design and applications. Dissertations & Theses—Gradworks Zhang S (2010) Acoustic metamaterial design and applications. Dissertations & Theses—Gradworks
13.
go back to reference Zhu R, Huang GL, Huang HH, Sun CT (2011) Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys Lett A 375:2863–2867CrossRef Zhu R, Huang GL, Huang HH, Sun CT (2011) Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys Lett A 375:2863–2867CrossRef
14.
go back to reference Peng H, Pai PF, Deng H (2015) Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. Int J Mech Sci 103:104–114CrossRef Peng H, Pai PF, Deng H (2015) Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. Int J Mech Sci 103:104–114CrossRef
15.
go back to reference Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT et al (2000) Locally resonant sonic materials. Science 289:1734–1736CrossRef Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT et al (2000) Locally resonant sonic materials. Science 289:1734–1736CrossRef
16.
go back to reference Sheng P, Zhang XX, Liu Z, Chan CT (2003) Locally resonant sonic materials. Science 338:201–205 Sheng P, Zhang XX, Liu Z, Chan CT (2003) Locally resonant sonic materials. Science 338:201–205
17.
go back to reference Jensen JS (2003) Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J Sound Vib 266:1053–1078CrossRef Jensen JS (2003) Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J Sound Vib 266:1053–1078CrossRef
18.
go back to reference Yao S, Zhou X, Hu G (2008) Experimental study on negative effective mass in a 1D mass spring system. New J Phys 10:043020CrossRef Yao S, Zhou X, Hu G (2008) Experimental study on negative effective mass in a 1D mass spring system. New J Phys 10:043020CrossRef
19.
go back to reference Shi S, Chen C, Prather DW (2004) Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J Opt Soc Am A 21:1769–1775CrossRef Shi S, Chen C, Prather DW (2004) Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J Opt Soc Am A 21:1769–1775CrossRef
20.
go back to reference Hao Y, Mittra R (2008) FDTD modeling of metamaterials. Theory and applications. Artech House Publishers, Norwood, MA Hao Y, Mittra R (2008) FDTD modeling of metamaterials. Theory and applications. Artech House Publishers, Norwood, MA
21.
go back to reference Shen L, He S, Xiao S (2002) A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal. Comput Phys Commun 143:213–221CrossRef Shen L, He S, Xiao S (2002) A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal. Comput Phys Commun 143:213–221CrossRef
22.
go back to reference Argyropoulos C, Kallos E, Hao Y (2010) FDTD analysis of the optical black hole. J Opt Soc Am B 27:2020–2025CrossRef Argyropoulos C, Kallos E, Hao Y (2010) FDTD analysis of the optical black hole. J Opt Soc Am B 27:2020–2025CrossRef
23.
go back to reference Wang G, Wen J, Liu Y, Wen X (2004) Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Phys Rev B 69:1324–1332 Wang G, Wen J, Liu Y, Wen X (2004) Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Phys Rev B 69:1324–1332
24.
go back to reference Yang W, Li J, Huang Y (2016) Modeling and analysis of the optical black hole in metamaterials by the finite element time-domain method. Comput Methods Appl Mech Eng 304:501–520MathSciNetCrossRef Yang W, Li J, Huang Y (2016) Modeling and analysis of the optical black hole in metamaterials by the finite element time-domain method. Comput Methods Appl Mech Eng 304:501–520MathSciNetCrossRef
25.
go back to reference Li J (2007) Error analysis of mixed finite element methods for wave propagation in double negative metamaterials. J Comput Appl Math 209:81–96MathSciNetCrossRef Li J (2007) Error analysis of mixed finite element methods for wave propagation in double negative metamaterials. J Comput Appl Math 209:81–96MathSciNetCrossRef
26.
go back to reference He ZC, Li E, Wang G, Li GY, Xia Z (2016) Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech 227:1–16MathSciNetCrossRef He ZC, Li E, Wang G, Li GY, Xia Z (2016) Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech 227:1–16MathSciNetCrossRef
27.
go back to reference Li E, He ZC, Wang G (2016) An exact solution to compute the band gap in phononic crystals. Comput Mater Sci 122:72–85CrossRef Li E, He ZC, Wang G (2016) An exact solution to compute the band gap in phononic crystals. Comput Mater Sci 122:72–85CrossRef
28.
go back to reference Li E, He ZC, Hu JY, Long XY (2017) Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput Methods Appl Mech Eng 324:128–148MathSciNetCrossRef Li E, He ZC, Hu JY, Long XY (2017) Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput Methods Appl Mech Eng 324:128–148MathSciNetCrossRef
29.
go back to reference Li E, He ZC, Wang G, Liu GR (2017) An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion. Comput Mech 60:1–14MathSciNetCrossRef Li E, He ZC, Wang G, Liu GR (2017) An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion. Comput Mech 60:1–14MathSciNetCrossRef
30.
go back to reference Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C et al (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRef Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C et al (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRef
31.
go back to reference Bostanabad R, Bui AT, Xie W, Apley DW, Chen W (2016) Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater 103:89–102CrossRef Bostanabad R, Bui AT, Xie W, Apley DW, Chen W (2016) Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater 103:89–102CrossRef
32.
go back to reference Feng YT, Li CF, Owen DRJ (2010) A directed Monte Carlo solution of linear stochastic algebraic system of equations. Finite Elem Anal Des 46:462–473MathSciNetCrossRef Feng YT, Li CF, Owen DRJ (2010) A directed Monte Carlo solution of linear stochastic algebraic system of equations. Finite Elem Anal Des 46:462–473MathSciNetCrossRef
33.
go back to reference Tartakovsky DM, Xiu D (2006) Stochastic analysis of transport in tubes with rough walls. J Comput Phys 217:248–259MathSciNetCrossRef Tartakovsky DM, Xiu D (2006) Stochastic analysis of transport in tubes with rough walls. J Comput Phys 217:248–259MathSciNetCrossRef
34.
go back to reference Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, Berlin, p 224CrossRef Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, Berlin, p 224CrossRef
35.
go back to reference Wang M, Huang Q (2016) A new hybrid uncertain analysis method for structural-acoustic systems with random and interval parameters. Comput Struct 175:15–28CrossRef Wang M, Huang Q (2016) A new hybrid uncertain analysis method for structural-acoustic systems with random and interval parameters. Comput Struct 175:15–28CrossRef
36.
go back to reference Kang Z, Cheng GD (2006) Structural robust design based on perturbation stochastic finite element method. Chin J Comput Mech 23:129–135 Kang Z, Cheng GD (2006) Structural robust design based on perturbation stochastic finite element method. Chin J Comput Mech 23:129–135
37.
go back to reference Papadimitriou C, Katafygiotis LS, Beck JL (1995) Approximate analysis of response variability of uncertain linear systems. Probab Eng Mech 10:251–264CrossRef Papadimitriou C, Katafygiotis LS, Beck JL (1995) Approximate analysis of response variability of uncertain linear systems. Probab Eng Mech 10:251–264CrossRef
38.
go back to reference Culla A, Carcaterra A (2007) Statistical moments predictions for a moored floating body oscillating in random waves. J Sound Vib 308:44–66CrossRef Culla A, Carcaterra A (2007) Statistical moments predictions for a moored floating body oscillating in random waves. J Sound Vib 308:44–66CrossRef
39.
go back to reference Xia B, Yu D, Liu J (2014) Transformed perturbation stochastic finite element method for static response analysis of stochastic structures. Finite Elem Anal Des 79:9–21MathSciNetCrossRef Xia B, Yu D, Liu J (2014) Transformed perturbation stochastic finite element method for static response analysis of stochastic structures. Finite Elem Anal Des 79:9–21MathSciNetCrossRef
40.
go back to reference Li J, Wang Y, Zhang C (2012) Dispersion relations of a periodic array of fluid-filled holes embedded in an elastic solid. J Comput Acoust 20:237–247MathSciNetCrossRef Li J, Wang Y, Zhang C (2012) Dispersion relations of a periodic array of fluid-filled holes embedded in an elastic solid. J Comput Acoust 20:237–247MathSciNetCrossRef
41.
go back to reference Liu GR (2016) On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation. Int J Comput Methods 13:1640003MathSciNetCrossRef Liu GR (2016) On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation. Int J Comput Methods 13:1640003MathSciNetCrossRef
42.
go back to reference Liu G, Xi Z, Horie Y (2001) Elastic waves in anisotropic laminates. Appl Mech Rev 56:B23CrossRef Liu G, Xi Z, Horie Y (2001) Elastic waves in anisotropic laminates. Appl Mech Rev 56:B23CrossRef
43.
go back to reference Xia B, Yu D (2012) Interval analysis of acoustic field with uncertain-but-bounded parameters. Comput Struct 112–113:235–44CrossRef Xia B, Yu D (2012) Interval analysis of acoustic field with uncertain-but-bounded parameters. Comput Struct 112–113:235–44CrossRef
44.
go back to reference Liu GR (2009) Meshfree methods: moving beyond the finite element method, Second edn. CRC Press, Boca RatonCrossRef Liu GR (2009) Meshfree methods: moving beyond the finite element method, Second edn. CRC Press, Boca RatonCrossRef
45.
go back to reference Wang C, Gao W, Song C, Zhang N (2014) Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties. J Sound Vib 333:2483–2503CrossRef Wang C, Gao W, Song C, Zhang N (2014) Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties. J Sound Vib 333:2483–2503CrossRef
46.
go back to reference Dossou KB, Botten LC, Wilcox S, Mcphedran RC, Sterke CMD, Nicorovici NA et al (2007) Exact modelling of generalised defect modes in photonic crystal structures. Physica B 394:330–334CrossRef Dossou KB, Botten LC, Wilcox S, Mcphedran RC, Sterke CMD, Nicorovici NA et al (2007) Exact modelling of generalised defect modes in photonic crystal structures. Physica B 394:330–334CrossRef
Metadata
Title
An uncertainty model of acoustic metamaterials with random parameters
Authors
Z. C. He
J. Y. Hu
Eric Li
Publication date
22-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1548-y

Other articles of this Issue 5/2018

Computational Mechanics 5/2018 Go to the issue