Skip to main content
Top

2018 | OriginalPaper | Chapter

Analysing the Genetic Diversity of Commonly Occurring Diseases

Authors : Shamita Malik, Sunil Kumar Khatri, Dolly Sharma

Published in: Nature Inspired Computing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is generally believed that the existence of all organisms present on this earth has their point of convergence in a common gene pool. The current species passed through an evolutionary process which is still underway. The theoretical assumptions relating to the common descent of all organisms are based on four simple facts: first, they had wide geographical dispersal; second, the different life forms were not remarkably unique and did not possess mutually exclusive characteristics; third, some of their attributes which apparently served no purpose had an uncanny similarity with some of their lost functional traits; and last, based on their common attributes these organisms can be put together into a well-defined, hierarchical and coherent group, like a family tree. Phylogenetic networks are the main tools that can be used to represent biological relationship between different species. Biologists, mathematicians, statisticians, computer scientists and others have designed various models for the reconstruction of evolutionary networks and developed numerous algorithms for efficient predictions and analysis. Even though these problems have been studied for a very long time, but the computational model built to solve the biological problems fail to give accurate results while working on real biological data, which could be due to the premises on which the model is based. The objective of this paper is to test and analyse the transmission of commonly occurring diseases to fit into more realistic models. The problems are not only important because we need to know how they came into existence and how they migrated, but also helpful for the treatment of such diseases and drug discovery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Magner, L.N.: A history of the life sciences, revised and expanded. CRC Press (2002) Magner, L.N.: A history of the life sciences, revised and expanded. CRC Press (2002)
2.
go back to reference Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. 96(7) (1999) Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. 96(7) (1999)
3.
go back to reference Nelson, G.: Historical biogeography: an alternative formalization. Syst. Zool. 23(4) (1974) Nelson, G.: Historical biogeography: an alternative formalization. Syst. Zool. 23(4) (1974)
4.
go back to reference Kitching, I.J.: Cladistics: The Theory and Practice of Parsimony Analysis, No. 11. Oxford University Press (1998) Kitching, I.J.: Cladistics: The Theory and Practice of Parsimony Analysis, No. 11. Oxford University Press (1998)
5.
go back to reference Malik, S., Sharma, D.: Reconstructing phylogenetic network with ReTF algorithm (rearranging transcriptional factor). In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), IEEE (2013) Malik, S., Sharma, D.: Reconstructing phylogenetic network with ReTF algorithm (rearranging transcriptional factor). In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), IEEE (2013)
6.
go back to reference Dinh, H., Rajasekaran, S., Kundeti, V.K.: PMS5: an efficient exact algorithm for the (ℓ, d)-motif finding problem. BMC Bioinform. (2011) Dinh, H., Rajasekaran, S., Kundeti, V.K.: PMS5: an efficient exact algorithm for the (ℓ, d)-motif finding problem. BMC Bioinform. (2011)
7.
go back to reference Malik, S., Sharma, D.: Detecting history of species using mining of motifs in Phylogenetic Networks. In: Proceedings of the 2014 International Conference on Information and Communication Technology for Competitive Strategies. ACM (2014) Malik, S., Sharma, D.: Detecting history of species using mining of motifs in Phylogenetic Networks. In: Proceedings of the 2014 International Conference on Information and Communication Technology for Competitive Strategies. ACM (2014)
8.
go back to reference Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University Press, New York (2000) Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University Press, New York (2000)
9.
go back to reference Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. (2013) Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. (2013)
10.
go back to reference Hurvich, C.M, Tsai, C.L.: Regression and time series model selection in small samples. Biometrika (1989) Hurvich, C.M, Tsai, C.L.: Regression and time series model selection in small samples. Biometrika (1989)
11.
go back to reference Schwarz, G.: Estimating the dimension of a model. Ann. Stat. (1978) Schwarz, G.: Estimating the dimension of a model. Ann. Stat. (1978)
12.
go back to reference Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. (1981) Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. (1981)
13.
go back to reference Felsenstein J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution (1985) Felsenstein J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution (1985)
Metadata
Title
Analysing the Genetic Diversity of Commonly Occurring Diseases
Authors
Shamita Malik
Sunil Kumar Khatri
Dolly Sharma
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6747-1_5

Premium Partner