Skip to main content
Top
Published in: Strength of Materials 1/2017

04-04-2017

Analysis and Experimental Study of Vibration System Characteristics of Ultrasonic Compound Electrical Machining

Authors: Z. Q. Deng, Y. W. Zhu, F. Wang, X. Gu, D. Yang

Published in: Strength of Materials | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of applying ultrasonic vibration in the ultrasonic compound electrical machining is analyzed. According to the resonance system during machining and on the basis of vibration theory, the shape and dimension parameters of the ultrasonic amplitude transformer and the tool head are calculated and analyzed. The amplitude transformer and the tool head used in this experiment have been designed to meet the requirements of this investigation. Under different conditions, ultrasonic vibration parameters are measured online using the high-speed high-precision micro-displacement laser sensor. The obtained results show high accuracy and efficiency of the investigation. The relationship parameters between the ultrasound amplitude and the ultrasonic excitation voltage are obtained from the mathematical calculations. The results provide the basic conditions for online optimization of the ultrasonic compound electrical machining parameters. Meanwhile, the working stability of the ultrasonic vibration system and the technical advantages of the ultrasonic compound electrical machining method are verified using the analysis results. In order to do this, the processing parameters have been reasonably selected, while the ultrasound machining and ultrasonic compound electric machining have been tested on ceramics, carbide, and other hard yet brittle materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. G. Cao, Ultrasonic Machining Technology, Chemical Industry Press, Beijing (2014). F. G. Cao, Ultrasonic Machining Technology, Chemical Industry Press, Beijing (2014).
2.
go back to reference Y. W. Zhu, J. Shao, N. Su, and N. Z. Yun, “Research on micro electro-discharged & electrolysis machining technology modulated by synchronizing ultrasonic vibrating,” J. Mech. Eng., 50, No. 1, 185–192 (2014).CrossRef Y. W. Zhu, J. Shao, N. Su, and N. Z. Yun, “Research on micro electro-discharged & electrolysis machining technology modulated by synchronizing ultrasonic vibrating,” J. Mech. Eng., 50, No. 1, 185–192 (2014).CrossRef
3.
go back to reference M. R. Shabgard and H. Alenabi, “Ultrasonic assisted electrical discharge machining of Ti–6Al–4V alloy,” Mater. Manuf. Process., 30, No. 8, 991–1000 (2015).CrossRef M. R. Shabgard and H. Alenabi, “Ultrasonic assisted electrical discharge machining of Ti–6Al–4V alloy,” Mater. Manuf. Process., 30, No. 8, 991–1000 (2015).CrossRef
4.
go back to reference J. Shao, Y. Zhu, H. Chen, et al., “Dynamic analysis of ultrasonic compound machining system and microstructure processing,” J. Chem. Pharm. Res., 5, No. 9, 381–387 (2013). J. Shao, Y. Zhu, H. Chen, et al., “Dynamic analysis of ultrasonic compound machining system and microstructure processing,” J. Chem. Pharm. Res., 5, No. 9, 381–387 (2013).
5.
go back to reference Y. F. Chen and Y. C. Lin, “Surface modifications of Al-Zn-Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into the dielectric,” Mater. Process. Technol., 209, No. 9, 4343–4350 (2009).CrossRef Y. F. Chen and Y. C. Lin, “Surface modifications of Al-Zn-Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into the dielectric,” Mater. Process. Technol., 209, No. 9, 4343–4350 (2009).CrossRef
6.
go back to reference X. Q. Zhan and H. Qian, “The research of a rotary ultrasonic vibration system,” J. Vibr. Shock, 29, No. 4, 218–221 (2010). X. Q. Zhan and H. Qian, “The research of a rotary ultrasonic vibration system,” J. Vibr. Shock, 29, No. 4, 218–221 (2010).
7.
go back to reference S. Lin, J. Hu, and Z. Fu, “Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring,” Smart Mater. Struct., 22, No. 4, 045018 (2013). S. Lin, J. Hu, and Z. Fu, “Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring,” Smart Mater. Struct., 22, No. 4, 045018 (2013).
8.
go back to reference Y. W. Zhu, Z. Wang, Z. J. Fan, et al., “Ultrasonic combined electrical micromachining technology and its application,” J. Mech. Eng., 43, No. 6, 186–197 (2010).CrossRef Y. W. Zhu, Z. Wang, Z. J. Fan, et al., “Ultrasonic combined electrical micromachining technology and its application,” J. Mech. Eng., 43, No. 6, 186–197 (2010).CrossRef
9.
go back to reference X. P. Xie, A. Tian, Z. Wang, and X. C. Yin, “Dynamical performance of ultrasonic stepped horn with loading,” J. Vibr. Shock, 31, No. 4, 157–161 (2012). X. P. Xie, A. Tian, Z. Wang, and X. C. Yin, “Dynamical performance of ultrasonic stepped horn with loading,” J. Vibr. Shock, 31, No. 4, 157–161 (2012).
10.
go back to reference Y. W. Zhu, J. Shao, and H. Z. Chen, “Dynamic analysis and test study of ultrasonic compound micro-fine electrical-machining system,” J. Chem. Pharm. Res., 5, No. 8, 126–132 (2013). Y. W. Zhu, J. Shao, and H. Z. Chen, “Dynamic analysis and test study of ultrasonic compound micro-fine electrical-machining system,” J. Chem. Pharm. Res., 5, No. 8, 126–132 (2013).
11.
go back to reference H. Zarepour, S. H. Yeo, P. C. Tan, and E. Aligiri, “A new approach for force measurement and workpiece clamping in micro-ultrasonic machining,” Int. J. Adv. Manuf. Tech., 53, 517–522 (2011).CrossRef H. Zarepour, S. H. Yeo, P. C. Tan, and E. Aligiri, “A new approach for force measurement and workpiece clamping in micro-ultrasonic machining,” Int. J. Adv. Manuf. Tech., 53, 517–522 (2011).CrossRef
12.
go back to reference Y. J. Choi, K. H. Park, Y. H. Hong, et al., “Effect of ultrasonic vibration in grinding; horn design and experiment,” Int. J. Precis. Eng. Man., 14, No. 11, 1873–1879 (2013).CrossRef Y. J. Choi, K. H. Park, Y. H. Hong, et al., “Effect of ultrasonic vibration in grinding; horn design and experiment,” Int. J. Precis. Eng. Man., 14, No. 11, 1873–1879 (2013).CrossRef
13.
go back to reference S. E. Kvashnin and A. A. Maximov, “Effects of heating of deformation antinode areas on amplitude–frequency characteristics of an ultrasonic vibration system,” Biomed. Eng., 47, No. 1, 46–49 (2013).CrossRef S. E. Kvashnin and A. A. Maximov, “Effects of heating of deformation antinode areas on amplitude–frequency characteristics of an ultrasonic vibration system,” Biomed. Eng., 47, No. 1, 46–49 (2013).CrossRef
14.
go back to reference C. Heise, S. Böhm, S. Schwarte, et al., “Hybrid cutting of granite by use of ultrasonic assistance,” Prod. Engineer., 8, No. 5, 567–575 (2014).CrossRef C. Heise, S. Böhm, S. Schwarte, et al., “Hybrid cutting of granite by use of ultrasonic assistance,” Prod. Engineer., 8, No. 5, 567–575 (2014).CrossRef
15.
go back to reference C.-G. Zhang, Y. Zhang, and F.-H. Zhang, “Mechanism of ultrasonic-pulse electrochemical compound machining based on particles,” J. Centr. South Univ., 21, No. 1, 151–159 (2014).CrossRef C.-G. Zhang, Y. Zhang, and F.-H. Zhang, “Mechanism of ultrasonic-pulse electrochemical compound machining based on particles,” J. Centr. South Univ., 21, No. 1, 151–159 (2014).CrossRef
Metadata
Title
Analysis and Experimental Study of Vibration System Characteristics of Ultrasonic Compound Electrical Machining
Authors
Z. Q. Deng
Y. W. Zhu
F. Wang
X. Gu
D. Yang
Publication date
04-04-2017
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2017
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9839-7

Other articles of this Issue 1/2017

Strength of Materials 1/2017 Go to the issue

Acknowledgments

Preface

Premium Partners