Skip to main content
Top

2017 | OriginalPaper | Chapter

17. Analysis of Articulated Motion for Social Signal Processing

Authors : Georg Layher, Michael Glodek, Heiko Neumann

Published in: Companion Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Companion technologies aim at developing sustained long-term relationships by employing non-verbal communication (NVC) skills. Visual NVC signals can be conveyed over a variety of non-verbal channels, such as facial expressions, gestures, or spatio-temporal behavior. It remains a challenge to equip technical systems with human-like abilities to reliably and effortlessly detect and analyze such social signals. In this proposal, we focus our investigation on the modeling of visual mechanisms for the processing and analysis of human-articulated motion and posture information from spatially intermediate to remote distances. From a modeling perspective, we investigate how visual features and their integration over several stages in a processing hierarchy take part in the establishment of articulated motion representations. We build upon known structures and mechanisms in cortical networks of primates and emphasize how generic processing principles might realize the building blocks for such network-based distributed processing through learning. We demonstrate how feature representations in segregated pathways and their convergence lead to integrated form and motion representations using artificially generated articulated motion sequences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We use the terms articulated motion and biological motion in a somewhat loose sense. In order to be more precise, articulated motion refers to the movement of parts, or limbs, which are connected by joints. These are themselves composed of elementary movements and concerted into a sequence of actions. The term biological motion is used in the social and cognitive neuroscience community to refer to moving animate objects, which can be attributed as being locomotive. Efforts have been devoted to impoverishing the stimuli depicting such animate movements in order to reveal the key features underlying the perception of such locomotions, e.g., the point-light motion sequences proposed by Johansson [27].
 
2
The superior temporal sulcus (STS) is anatomically not an area, but a region that contains several areas and subcomponents thereof. We use the term “complex” for the model in order to highlight its specific functionality within the model as a convergent zone of information fusion.
 
Literature
1.
go back to reference Argyle, M.: Bodily Communication. Methuen & Co Ltd, London (1988) Argyle, M.: Bodily Communication. Methuen & Co Ltd, London (1988)
2.
go back to reference Baker, C., Keysers, C., Jellema, T., Wicker, B., Perrett, D.: Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Exp. Brain Res. 140(3), 375–381 (2001)CrossRef Baker, C., Keysers, C., Jellema, T., Wicker, B., Perrett, D.: Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Exp. Brain Res. 140(3), 375–381 (2001)CrossRef
3.
go back to reference Barraclough, N.E., Xiao, D., Oram, M.W., Perrett, D.: The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Prog. Brain Res. 154, 135–148 (2006)CrossRef Barraclough, N.E., Xiao, D., Oram, M.W., Perrett, D.: The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Prog. Brain Res. 154, 135–148 (2006)CrossRef
4.
go back to reference Bayerl, P., Neumann, H.: Disambiguating visual motion through contextual feedback modulation. Neural Comput. 16(10), 2041–2066 (2004)CrossRefMATH Bayerl, P., Neumann, H.: Disambiguating visual motion through contextual feedback modulation. Neural Comput. 16(10), 2041–2066 (2004)CrossRefMATH
5.
go back to reference Beauchamp, M.S., Lee, K.E., Haxby, J.V., Martin, A.: FMRI responses to video and point-light displays of moving humans and manipulable objects. J. Cogn. Neurosci. 15(7), 991–1001 (2003)CrossRef Beauchamp, M.S., Lee, K.E., Haxby, J.V., Martin, A.: FMRI responses to video and point-light displays of moving humans and manipulable objects. J. Cogn. Neurosci. 15(7), 991–1001 (2003)CrossRef
6.
go back to reference Benyon, D., Mival, O.: Landscaping personification technologies: from interactions to relationships. In: Proceedings of the CHI ’08, Extended Abstracts on Human Factors in Computing Systems, CHI EA ’08, pp. 3657–3662. ACM, New York (2008) Benyon, D., Mival, O.: Landscaping personification technologies: from interactions to relationships. In: Proceedings of the CHI ’08, Extended Abstracts on Human Factors in Computing Systems, CHI EA ’08, pp. 3657–3662. ACM, New York (2008)
7.
go back to reference Benyon, D., Mival, O.: Scenarios for companions. In: Your Virtual Butler. Lecture Notes in Computer Science, vol. 7407, pp. 79–96. Springer, Berlin (2013) Benyon, D., Mival, O.: Scenarios for companions. In: Your Virtual Butler. Lecture Notes in Computer Science, vol. 7407, pp. 79–96. Springer, Berlin (2013)
8.
go back to reference Bickmore, T.W., Picard, R.W.: Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput.-Hum. Interaction 12, 293–327 (2005)CrossRef Bickmore, T.W., Picard, R.W.: Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput.-Hum. Interaction 12, 293–327 (2005)CrossRef
9.
go back to reference Blakemore, S.J., Decety, J.: From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2(8), 561–567 (2001) Blakemore, S.J., Decety, J.: From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2(8), 561–567 (2001)
10.
go back to reference Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)CrossRef Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)CrossRef
11.
go back to reference Bouecke, J.D., Tlapale, E., Kornprobst, P., Neumann, H.: Neural mechanisms of motion detection, integration, and segregation: from biology to artificial image processing systems. EURASIP J. Adv. Signal Process. 2011(1), 781561 (2010)CrossRef Bouecke, J.D., Tlapale, E., Kornprobst, P., Neumann, H.: Neural mechanisms of motion detection, integration, and segregation: from biology to artificial image processing systems. EURASIP J. Adv. Signal Process. 2011(1), 781561 (2010)CrossRef
12.
go back to reference Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and gain control in V1 simple cells. Cereb. Cortex (13), 401–444 (1999)CrossRef Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and gain control in V1 simple cells. Cereb. Cortex (13), 401–444 (1999)CrossRef
13.
go back to reference Carpenter, G.A.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)CrossRef Carpenter, G.A.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)CrossRef
14.
go back to reference Casile, A., Giese, M.A.: Critical features for the recognition of biological motion. J. Vis. 5(4), 6 (2005)CrossRef Casile, A., Giese, M.A.: Critical features for the recognition of biological motion. J. Vis. 5(4), 6 (2005)CrossRef
15.
go back to reference Castellano, G., McOwan, P.W.: Towards affect sensitive and socially perceptive companions. In: Your Virtual Butler. Lecture Notes in Computer Science, vol. 7407, pp. 42–53. Springer, Berlin (2013) Castellano, G., McOwan, P.W.: Towards affect sensitive and socially perceptive companions. In: Your Virtual Butler. Lecture Notes in Computer Science, vol. 7407, pp. 42–53. Springer, Berlin (2013)
16.
go back to reference Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005, pp. 65–72. IEEE, New York (2005) Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005, pp. 65–72. IEEE, New York (2005)
17.
go back to reference Escobar, M.J., Kornprobst, P.: Action recognition via bio-inspired features: the richness of center–surround interaction. Comput. Vis. Image Underst. 116(5), 593–605 (2012)CrossRef Escobar, M.J., Kornprobst, P.: Action recognition via bio-inspired features: the richness of center–surround interaction. Comput. Vis. Image Underst. 116(5), 593–605 (2012)CrossRef
18.
go back to reference Escobar, M.J., Masson, G.S., Vieville, T., Kornprobst, P.: Action recognition using a bio-inspired feedforward spiking network. Int. J. Comput. Vis. 82(3), 284–301 (2009)CrossRef Escobar, M.J., Masson, G.S., Vieville, T., Kornprobst, P.: Action recognition using a bio-inspired feedforward spiking network. Int. J. Comput. Vis. 82(3), 284–301 (2009)CrossRef
19.
go back to reference Frith, C.D., Wolpert, D.M.: The Neuroscience of Social Interaction: Decoding, Imitating, and Influencing the Actions of Others. Oxford University Press, Oxford (2004) Frith, C.D., Wolpert, D.M.: The Neuroscience of Social Interaction: Decoding, Imitating, and Influencing the Actions of Others. Oxford University Press, Oxford (2004)
20.
go back to reference Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 4(3), 179–192 (2003)CrossRef Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 4(3), 179–192 (2003)CrossRef
21.
go back to reference Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)CrossRef Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)CrossRef
22.
go back to reference Grüsser, O.J.: Grundlagen der neuronalen Informationsverarbeitung in den Sinnesorganen und im Gehirn. In: GI - 8. Jahrestagung, pp. 234–273. Springer, Berlin (1978) Grüsser, O.J.: Grundlagen der neuronalen Informationsverarbeitung in den Sinnesorganen und im Gehirn. In: GI - 8. Jahrestagung, pp. 234–273. Springer, Berlin (1978)
23.
go back to reference Hansen, T., Neumann, H.: A recurrent model of contour integration in primary visual cortex. J. Vis. 8(8), 1–25 (2008)CrossRef Hansen, T., Neumann, H.: A recurrent model of contour integration in primary visual cortex. J. Vis. 8(8), 1–25 (2008)CrossRef
24.
go back to reference Jellema, T., Perrett, D.I.: Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion? Neuropsychologia 41(13), 1728–1737 (2003)CrossRef Jellema, T., Perrett, D.I.: Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion? Neuropsychologia 41(13), 1728–1737 (2003)CrossRef
25.
go back to reference Jellema, T., Maassen, G., Perrett, D.I.: Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey. Cereb. Cortex 14(7), 781–790 (2004)CrossRef Jellema, T., Maassen, G., Perrett, D.I.: Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey. Cereb. Cortex 14(7), 781–790 (2004)CrossRef
26.
go back to reference Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: Proceedings of the 11th IEEE International Conference on Computer Vision, pp. 1–8 (2007) Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: Proceedings of the 11th IEEE International Conference on Computer Vision, pp. 1–8 (2007)
27.
go back to reference Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)CrossRef Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)CrossRef
28.
go back to reference Kourtzi, Z., Kanwisher, N.: Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12(1), 48–55 (2000)CrossRef Kourtzi, Z., Kanwisher, N.: Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12(1), 48–55 (2000)CrossRef
29.
go back to reference Lange, J., Lappe, M.: A model of biological motion perception from configural form cues. J. Neurosci. 26(11), 2894–2906 (2006)CrossRef Lange, J., Lappe, M.: A model of biological motion perception from configural form cues. J. Neurosci. 26(11), 2894–2906 (2006)CrossRef
30.
go back to reference Lappe, M.: Perception of biological motion as motion-from-form. e-Neuroforum 3(3), 67–73 (2012) Lappe, M.: Perception of biological motion as motion-from-form. e-Neuroforum 3(3), 67–73 (2012)
31.
go back to reference Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2-3), 107–123 (2005)CrossRef Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2-3), 107–123 (2005)CrossRef
32.
go back to reference Laptev, I., Caputo, B., Schüldt, C., Lindeberg, T.: Local velocity-adapted motion events for spatio-temporal recognition. Comput. Vis. Image Underst. 108(3), 207–229 (2007)CrossRef Laptev, I., Caputo, B., Schüldt, C., Lindeberg, T.: Local velocity-adapted motion events for spatio-temporal recognition. Comput. Vis. Image Underst. 108(3), 207–229 (2007)CrossRef
33.
go back to reference Layher, G., Giese, M.A., Neumann, H.: Learning representations of animated motion sequences - a neural model. Top. Cogn. Sci. 6(1), 170–182 (2014)CrossRef Layher, G., Giese, M.A., Neumann, H.: Learning representations of animated motion sequences - a neural model. Top. Cogn. Sci. 6(1), 170–182 (2014)CrossRef
35.
go back to reference Pentland, A.: Social Signal Processing. IEEE Signal Process. Mag. 24(4), 108–111 (2007)CrossRef Pentland, A.: Social Signal Processing. IEEE Signal Process. Mag. 24(4), 108–111 (2007)CrossRef
36.
go back to reference Raudies, F., Mingolla, E., Neumann, H.: A model of motion transparency processing with local center-surround interactions and feedback. Neural Comput. 1–45 (2011) Raudies, F., Mingolla, E., Neumann, H.: A model of motion transparency processing with local center-surround interactions and feedback. Neural Comput. 1–45 (2011)
37.
go back to reference Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRef Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRef
38.
go back to reference Rittscher, J., Blake, A., Hoogs, A., Stein, G.: Mathematical modelling of animate and intentional motion. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 358(1431), 475–490 (2003)CrossRef Rittscher, J., Blake, A., Hoogs, A., Stein, G.: Mathematical modelling of animate and intentional motion. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 358(1431), 475–490 (2003)CrossRef
39.
go back to reference Schindler, K., Van Gool, L.: Action snippets: how many frames does human action recognition require? In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Computer Society, New York (2008) Schindler, K., Van Gool, L.: Action snippets: how many frames does human action recognition require? In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Computer Society, New York (2008)
40.
go back to reference Senior, C., Barnes, J., Giampietroc, V., Simmons, A., Bullmore, E.T., Brammer, M., David, A.S.: The functional neuroanatomy of implicit-motion perception or ‘representational momentum’. Curr. Biol. 10(1), 16–22 (2000)CrossRef Senior, C., Barnes, J., Giampietroc, V., Simmons, A., Bullmore, E.T., Brammer, M., David, A.S.: The functional neuroanatomy of implicit-motion perception or ‘representational momentum’. Curr. Biol. 10(1), 16–22 (2000)CrossRef
41.
go back to reference Thirkettle, M., Benton, C.P., Scott-Samuel, N.E.: Contributions of form, motion and task to biological motion perception. J. Vis. 9(3), 28 (2009)CrossRef Thirkettle, M., Benton, C.P., Scott-Samuel, N.E.: Contributions of form, motion and task to biological motion perception. J. Vis. 9(3), 28 (2009)CrossRef
42.
go back to reference Thompson, J.C., Clarke, M., Stewart, T., Puce, A.: Configural processing of biological motion in human superior temporal sulcus. J. Neurosci. 25(39), 9059–9066 (2005)CrossRef Thompson, J.C., Clarke, M., Stewart, T., Puce, A.: Configural processing of biological motion in human superior temporal sulcus. J. Neurosci. 25(39), 9059–9066 (2005)CrossRef
43.
go back to reference Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)CrossRef Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)CrossRef
44.
go back to reference Ungerleider, L.G., Pasternak, T.: Ventral and dorsal cortical processing streams. Vis. Neurosci. 1(34), 541–562 (2004) Ungerleider, L.G., Pasternak, T.: Ventral and dorsal cortical processing streams. Vis. Neurosci. 1(34), 541–562 (2004)
45.
go back to reference Wallis, G., Rolls, E.: Invariant face and object recognition in the visual system. Prog. Neurobiol. 51(2), 167–194 (1997)CrossRef Wallis, G., Rolls, E.: Invariant face and object recognition in the visual system. Prog. Neurobiol. 51(2), 167–194 (1997)CrossRef
46.
go back to reference Weidenbacher, U., Neumann, H.: Extraction of surface-related features in a recurrent model of V1-V2 interactions. PloS ONE 4(6), e5909 (2009) Weidenbacher, U., Neumann, H.: Extraction of surface-related features in a recurrent model of V1-V2 interactions. PloS ONE 4(6), e5909 (2009)
Metadata
Title
Analysis of Articulated Motion for Social Signal Processing
Authors
Georg Layher
Michael Glodek
Heiko Neumann
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-43665-4_17

Premium Partner