Skip to main content
Top

2016 | OriginalPaper | Chapter

24. Analysis of Mechanisms for PVP-Active-Agent Formulation as in Supercritical Antisolvent Spray Process

Authors : Matthias Rossmann, Daniel Bassing, Iolanda De Marco, Valentina Prosapio, Ernesto Reverchon, Eberhard Schlücker, Andreas Braeuer

Published in: Process-Spray

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Supercritical antisolvent technology can precipitate polyvinylpyrrolidone (PVP) particles and crystallize paracetamol (PCM) crystals first separately and then together in the form of a solid dispersion. Supercritical carbon dioxide (scCO2) is used as an antisolvent. For PVP particle generation, ethanol, acetone, and mixtures of ethanol and acetone are used as solvents. The initial concentration of PVP in the solution was varied between 0.5 and 5 wt%, the operation pressure between 10 and 30 MPa, and the composition of ethanol/acetone solvent mixtures between 100 and 0 wt% of ethanol at a constant temperature of 313 K. An increase in the content of the “poor” solvent acetone in the initial solution leads to a significant decrease in mean particle size. Fully amorphous PVP powder always precipitates for all the parameters investigated.
For PCM powder generation, ethanol, acetone, and mixtures of ethanol and acetone are used as solvents. The initial PCM concentration in the solution was varied between 0.5 and 5 wt% and the operation pressure between 10 and 16 MPa. A variation of these parameters leads to a manipulation of the size and the morphology of the crystallized PCM crystals. Irrespective of parameters such as pressure or concentration, the same polymorphic form of paracetamol is always produced for pure solvents. When generating PCM particles from mixtures of ethanol and acetone, two different crystal forms were detected depending on the ratio between the solvents.
The solid dispersions were generated at different ratios of PVP to PCM. These solute mixtures were also dissolved in pure ethanol and pure acetone as well as in different mixtures of these two solvents. Fully amorphous solid dispersions consisting of PCM and PVP together were generated at different ratios of PVP to PCM. All influences of parameters were investigated and discussed in detail.
The mechanisms that control the final particle properties are discussed taking into account two different models for “ideal” and “nonideal” solutes. Furthermore, the study of “unconventional” supercritical antisolvent (SAS) process parameters such as the solvation power of the solvent shows that these parameters qualify to tailor polymer particle properties via SAS processing. In addition, investigating the behavior of both solutes separately, fully amorphous solid dispersions consisting of PCM and PVP together were generated. The crystalline structure and solid dispersions of the particles was analyzed using X-ray and their morphology was analyzed using scanning electron microscopy (SEM).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rossmann, M. (2015). Tailor made functional particles by means of supercritical antisolvent (SAS) processing. Friedrich-Alexander-Universität Erlangen-Nürnberg. Rossmann, M. (2015). Tailor made functional particles by means of supercritical antisolvent (SAS) processing. Friedrich-Alexander-Universität Erlangen-Nürnberg.
2.
go back to reference Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453, 253–284.CrossRef Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453, 253–284.CrossRef
3.
go back to reference Chiou, W. L., & Riegelman, S. (1971). Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences, 60, 1281–1302.CrossRef Chiou, W. L., & Riegelman, S. (1971). Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences, 60, 1281–1302.CrossRef
4.
go back to reference Badens, E., Majerik, V., Horváth, G., Szokonya, L., Bosc, N., Teillaud, E., et al. (2009). Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. International Journal of Pharmaceutics, 377, 25–34.CrossRef Badens, E., Majerik, V., Horváth, G., Szokonya, L., Bosc, N., Teillaud, E., et al. (2009). Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. International Journal of Pharmaceutics, 377, 25–34.CrossRef
5.
go back to reference Lim, R. T. Y., Ng, W. K., & Tan, R. B. H. (2010). Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). Journal of Supercritical Fluids, 53, 179–184.CrossRef Lim, R. T. Y., Ng, W. K., & Tan, R. B. H. (2010). Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). Journal of Supercritical Fluids, 53, 179–184.CrossRef
6.
go back to reference Garekani, H. A., Sadeghi, F., & Ghazi, A. (2003). Increasing the aqueous solubility of acetaminophen in the presence of polyvinylpyrrolidone and investigation of the mechanisms involved. Drug Development and Industrial Pharmacy, 29, 173–179.CrossRef Garekani, H. A., Sadeghi, F., & Ghazi, A. (2003). Increasing the aqueous solubility of acetaminophen in the presence of polyvinylpyrrolidone and investigation of the mechanisms involved. Drug Development and Industrial Pharmacy, 29, 173–179.CrossRef
7.
go back to reference Muhrer, G., Meier, U., Fusaro, F., Albano, S., & Mazzotti, M. (2006). Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: Generation of drug microparticles and drug–polymer solid dispersions. International Journal of Pharmaceutics, 308, 69–83.CrossRef Muhrer, G., Meier, U., Fusaro, F., Albano, S., & Mazzotti, M. (2006). Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: Generation of drug microparticles and drug–polymer solid dispersions. International Journal of Pharmaceutics, 308, 69–83.CrossRef
8.
go back to reference Kluge, J., Fusaro, F., Muhrer, G., Thakur, R., & Mazzotti, M. (2009). Rational design of drug–polymer co-formulations by CO2 anti-solvent precipitation. The Journal of Supercritical Fluids, 48, 176–182.CrossRef Kluge, J., Fusaro, F., Muhrer, G., Thakur, R., & Mazzotti, M. (2009). Rational design of drug–polymer co-formulations by CO2 anti-solvent precipitation. The Journal of Supercritical Fluids, 48, 176–182.CrossRef
9.
go back to reference Wu, K., Li, J., Wang, W., & Winstead, D. A. (2009). Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. Journal of Pharmaceutical Sciences, 98, 2422–2431.CrossRef Wu, K., Li, J., Wang, W., & Winstead, D. A. (2009). Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. Journal of Pharmaceutical Sciences, 98, 2422–2431.CrossRef
10.
go back to reference Rossmann, M., Braeuer, A., & Schluecker, E. (2014). Supercritical antisolvent micronization of PVP and ibuprofen sodium towards tailored solid dispersions. Journal of Supercritical Fluids, 89, 16–27.CrossRef Rossmann, M., Braeuer, A., & Schluecker, E. (2014). Supercritical antisolvent micronization of PVP and ibuprofen sodium towards tailored solid dispersions. Journal of Supercritical Fluids, 89, 16–27.CrossRef
11.
go back to reference Reverchon, E., De Marco, I., & Torino, E. (2007). Nanoparticles production by supercritical antisolvent precipitation: A general interpretation. The Journal of Supercritical Fluids, 43, 126–138.CrossRef Reverchon, E., De Marco, I., & Torino, E. (2007). Nanoparticles production by supercritical antisolvent precipitation: A general interpretation. The Journal of Supercritical Fluids, 43, 126–138.CrossRef
12.
go back to reference Reverchon, E., Adami, R., Caputo, G., & De Marco, I. (2008). Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results. The Journal of Supercritical Fluids, 47, 70–84.CrossRef Reverchon, E., Adami, R., Caputo, G., & De Marco, I. (2008). Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results. The Journal of Supercritical Fluids, 47, 70–84.CrossRef
13.
go back to reference Reverchon, E., De Marco, I., Adami, R., & Caputo, G. (2008). Expanded micro-particles by supercritical antisolvent precipitation: Interpretation of results. The Journal of Supercritical Fluids, 44, 98–108.CrossRef Reverchon, E., De Marco, I., Adami, R., & Caputo, G. (2008). Expanded micro-particles by supercritical antisolvent precipitation: Interpretation of results. The Journal of Supercritical Fluids, 44, 98–108.CrossRef
14.
go back to reference Boutin, O., Petit-Gas, T., & Badens, E. (2009). Powder micronization using a CO2 supercritical antisolvent type process: Comparison of different introduction devices. Industrial & Engineering Chemistry Research, 48, 5671–5678.CrossRef Boutin, O., Petit-Gas, T., & Badens, E. (2009). Powder micronization using a CO2 supercritical antisolvent type process: Comparison of different introduction devices. Industrial & Engineering Chemistry Research, 48, 5671–5678.CrossRef
15.
go back to reference Martín, A., Bouchard, A., Hofland, G. W., Witkamp, G. J., & Cocero, M. J. (2007). Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation. The Journal of Supercritical Fluids, 41, 126–137.CrossRef Martín, A., Bouchard, A., Hofland, G. W., Witkamp, G. J., & Cocero, M. J. (2007). Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation. The Journal of Supercritical Fluids, 41, 126–137.CrossRef
16.
go back to reference Martín, Á., Scholle, K., Mattea, F., Meterc, D., & Cocero, M. J. (2009). Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation. Crystal Growth & Design, 9, 2504–2511.CrossRef Martín, Á., Scholle, K., Mattea, F., Meterc, D., & Cocero, M. J. (2009). Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation. Crystal Growth & Design, 9, 2504–2511.CrossRef
17.
go back to reference Wubbolts, F. E., Bruinsma, O. S. L., & Van Rosmalen, G. M. (2004). Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases. Journal of Supercritical Fluids, 32, 79–87.CrossRef Wubbolts, F. E., Bruinsma, O. S. L., & Van Rosmalen, G. M. (2004). Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases. Journal of Supercritical Fluids, 32, 79–87.CrossRef
18.
go back to reference De Marco, I., Knauer, O., Cice, F., Braeuer, A., & Reverchon, E. (2012). Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: The influence of solvents. Chemical Engineering Journal, 203, 71–80.CrossRef De Marco, I., Knauer, O., Cice, F., Braeuer, A., & Reverchon, E. (2012). Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: The influence of solvents. Chemical Engineering Journal, 203, 71–80.CrossRef
19.
go back to reference Dowy, S., Braeuer, A., Reinhold-López, K., & Leipertz, A. (2009). Laser analyses of mixture formation and the influence of solute on particle precipitation in the SAS process. Journal of Supercritical Fluids, 50, 265–275.CrossRef Dowy, S., Braeuer, A., Reinhold-López, K., & Leipertz, A. (2009). Laser analyses of mixture formation and the influence of solute on particle precipitation in the SAS process. Journal of Supercritical Fluids, 50, 265–275.CrossRef
20.
go back to reference Dowy, S., Braeuer, A., Schatz, R., Schluecker, E., & Leipertz, A. (2009). CO2 partial density distribution during high-pressure mixing with ethanol in the supercritical antisolvent process. Journal of Supercritical Fluids, 48, 195–202.CrossRef Dowy, S., Braeuer, A., Schatz, R., Schluecker, E., & Leipertz, A. (2009). CO2 partial density distribution during high-pressure mixing with ethanol in the supercritical antisolvent process. Journal of Supercritical Fluids, 48, 195–202.CrossRef
21.
go back to reference Kordikowski, A., Schenk, A. P., Van Nielen, R. M., & Peters, C. J. (1995). Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of Supercritical Fluids, 8, 205–216.CrossRef Kordikowski, A., Schenk, A. P., Van Nielen, R. M., & Peters, C. J. (1995). Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of Supercritical Fluids, 8, 205–216.CrossRef
22.
go back to reference Span, R., & Wagner, W. (2003). Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids. International Journal of Thermophysics, 24, 1–39.CrossRef Span, R., & Wagner, W. (2003). Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids. International Journal of Thermophysics, 24, 1–39.CrossRef
23.
go back to reference Reverchon, E., Torino, E., Dowy, S., Braeuer, A., & Leipertz, A. (2010). Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chemical Engineering Journal, 156, 446–458.CrossRef Reverchon, E., Torino, E., Dowy, S., Braeuer, A., & Leipertz, A. (2010). Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chemical Engineering Journal, 156, 446–458.CrossRef
24.
go back to reference Dowy, S., Braeuer, A., Reinhold-López, K., & Leipertz, A. (2010). In situ optical monitoring of the solution concentration influence on supercritical particle precipitation. Journal of Supercritical Fluids, 55, 282–291.CrossRef Dowy, S., Braeuer, A., Reinhold-López, K., & Leipertz, A. (2010). In situ optical monitoring of the solution concentration influence on supercritical particle precipitation. Journal of Supercritical Fluids, 55, 282–291.CrossRef
25.
go back to reference Dukhin, S. S., Zhu, C., Dave, R., Pfeffer, R., Luo, J. J., Chávez, F., et al. (2003). Dynamic interfacial tension near critical point of a solvent–antisolvent mixture and laminar jet stabilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 229, 181–199.CrossRef Dukhin, S. S., Zhu, C., Dave, R., Pfeffer, R., Luo, J. J., Chávez, F., et al. (2003). Dynamic interfacial tension near critical point of a solvent–antisolvent mixture and laminar jet stabilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 229, 181–199.CrossRef
26.
go back to reference Bellan, J. (2000). Supercritical (and subcritical) fluid behavior and modeling: Drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and Combustion Science, 26, 329–366.CrossRef Bellan, J. (2000). Supercritical (and subcritical) fluid behavior and modeling: Drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and Combustion Science, 26, 329–366.CrossRef
27.
go back to reference Myerson, A. S. (1993). Handbook of industrial crystallization. Boston: Butterworth-Heinemann. Myerson, A. S. (1993). Handbook of industrial crystallization. Boston: Butterworth-Heinemann.
28.
go back to reference Bristow, S., Shekunov, T., Shekunov, B. Y., & York, P. (2001). Analysis of the supersaturation and precipitation process with supercritical CO2. The Journal of Supercritical Fluids, 21, 257–271.CrossRef Bristow, S., Shekunov, T., Shekunov, B. Y., & York, P. (2001). Analysis of the supersaturation and precipitation process with supercritical CO2. The Journal of Supercritical Fluids, 21, 257–271.CrossRef
29.
go back to reference Mukhopadhyay, M., & Dalvi, S. V. (2005). Analysis of supersaturation and nucleation in a moving solution droplet with flowing supercritical carbon dioxide. Journal of Chemical Technology & Biotechnology, 80, 445–454.CrossRef Mukhopadhyay, M., & Dalvi, S. V. (2005). Analysis of supersaturation and nucleation in a moving solution droplet with flowing supercritical carbon dioxide. Journal of Chemical Technology & Biotechnology, 80, 445–454.CrossRef
30.
go back to reference Debenedetti, P. G. (1990). Homogeneous nucleation in supercritical fluids. AIChE Journal, 36, 1289–1298.CrossRef Debenedetti, P. G. (1990). Homogeneous nucleation in supercritical fluids. AIChE Journal, 36, 1289–1298.CrossRef
31.
go back to reference Guinier, A. (1963). X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. San Francisco: W.H. Freeman. Guinier, A. (1963). X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. San Francisco: W.H. Freeman.
32.
go back to reference Ruether, F., & Sadowski, G. (2009). Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. Journal of Pharmaceutical Sciences, 98, 4205–4215.CrossRef Ruether, F., & Sadowski, G. (2009). Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. Journal of Pharmaceutical Sciences, 98, 4205–4215.CrossRef
33.
go back to reference Malavolta, L., Oliveira, E., Cilli, E. M., & Nakaie, C. R. (2002). Solvation of polymers as model for solvent effect investigation: Proposition of a novel polarity scale. Tetrahedron, 58, 4383–4394.CrossRef Malavolta, L., Oliveira, E., Cilli, E. M., & Nakaie, C. R. (2002). Solvation of polymers as model for solvent effect investigation: Proposition of a novel polarity scale. Tetrahedron, 58, 4383–4394.CrossRef
34.
go back to reference Gokhale, A., Khusid, B., Dave, R. N., & Pfeffer, R. (2007). Effect of solvent strength and operating pressure on the formation of submicrometer polymer particles in supercritical microjets. The Journal of Supercritical Fluids, 43, 341–356.CrossRef Gokhale, A., Khusid, B., Dave, R. N., & Pfeffer, R. (2007). Effect of solvent strength and operating pressure on the formation of submicrometer polymer particles in supercritical microjets. The Journal of Supercritical Fluids, 43, 341–356.CrossRef
35.
go back to reference Rossmann, M., Braeuer, A., Dowy, S., Gallinger, T. G., Leipertz, A., & Schluecker, E. (2012). Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 66, 350–358.CrossRef Rossmann, M., Braeuer, A., Dowy, S., Gallinger, T. G., Leipertz, A., & Schluecker, E. (2012). Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 66, 350–358.CrossRef
36.
go back to reference De Marco, I., Rossmann, M., Prosapio, V., Reverchon, E., & Braeuer, A. (2015). Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP. Chemical Engineering Journal, 273, 344–352.CrossRef De Marco, I., Rossmann, M., Prosapio, V., Reverchon, E., & Braeuer, A. (2015). Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP. Chemical Engineering Journal, 273, 344–352.CrossRef
37.
go back to reference Chiu, H.-Y., Lee, M.-J., & Lin, H.-m. (2008). Vapor–liquid phase boundaries of binary mixtures of carbon dioxide with ethanol and acetone. Journal of Chemical & Engineering Data, 53, 2393–2402.CrossRef Chiu, H.-Y., Lee, M.-J., & Lin, H.-m. (2008). Vapor–liquid phase boundaries of binary mixtures of carbon dioxide with ethanol and acetone. Journal of Chemical & Engineering Data, 53, 2393–2402.CrossRef
38.
go back to reference De Marco, I., Prosapio, V., Cice, F., & Reverchon, E. (2013). Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: Cellulose acetate microparticles. The Journal of Supercritical Fluids, 83, 153–160.CrossRef De Marco, I., Prosapio, V., Cice, F., & Reverchon, E. (2013). Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: Cellulose acetate microparticles. The Journal of Supercritical Fluids, 83, 153–160.CrossRef
39.
go back to reference Lazzaroni, M. J., Bush, D., Brown, J. S., & Eckert, C. A. (2005). High-pressure vapor–liquid equilbria of some carbon dioxide + organic binary systems. Journal of Chemical & Engineering Data, 50, 60–65.CrossRef Lazzaroni, M. J., Bush, D., Brown, J. S., & Eckert, C. A. (2005). High-pressure vapor–liquid equilbria of some carbon dioxide + organic binary systems. Journal of Chemical & Engineering Data, 50, 60–65.CrossRef
40.
go back to reference Sala, S., Danten, Y., Ventosa, N., Tassaing, T., Besnard, M., & Veciana, J. (2006). Solute–solvent interactions governing preferential solvation phenomena of acetaminophen in CO2-expanded organic solutions: A spectroscopic and theoretical study. The Journal of Supercritical Fluids, 38, 295–305.CrossRef Sala, S., Danten, Y., Ventosa, N., Tassaing, T., Besnard, M., & Veciana, J. (2006). Solute–solvent interactions governing preferential solvation phenomena of acetaminophen in CO2-expanded organic solutions: A spectroscopic and theoretical study. The Journal of Supercritical Fluids, 38, 295–305.CrossRef
41.
go back to reference Rossmann, M., Braeuer, A., Leipertz, A., & Schluecker, E. (2013). Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. Journal of Supercritical Fluids, 82, 230–237.CrossRef Rossmann, M., Braeuer, A., Leipertz, A., & Schluecker, E. (2013). Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. Journal of Supercritical Fluids, 82, 230–237.CrossRef
42.
go back to reference Varona, S., Fernández, J., Rossmann, M., & Braeuer, A. (2013). Solubility of paracetamol and polyvinylpyrrolidone in mixtures of carbon dioxide, ethanol, and acetone at elevated pressures. Journal of Chemical & Engineering Data, 58, 1054–1061.CrossRef Varona, S., Fernández, J., Rossmann, M., & Braeuer, A. (2013). Solubility of paracetamol and polyvinylpyrrolidone in mixtures of carbon dioxide, ethanol, and acetone at elevated pressures. Journal of Chemical & Engineering Data, 58, 1054–1061.CrossRef
43.
go back to reference Dowy, S., Torino, E., Luther, S. K., Rossmann, M., & Braeuer, A. (2011). Imaging the supersaturation in high-pressure systems for particle generation. Chemical Engineering Journal, 168, 896–902.CrossRef Dowy, S., Torino, E., Luther, S. K., Rossmann, M., & Braeuer, A. (2011). Imaging the supersaturation in high-pressure systems for particle generation. Chemical Engineering Journal, 168, 896–902.CrossRef
44.
go back to reference Perlovich, G. L., Volkova, T. V., & Bauer-Brandl, A. (2007). Polymorphism of paracetamol: Relative stability of the monoclinic and orthorhombic phase revisited by sublimation and solution calorimetry. Journal of Thermal Analysis and Calorimetry, 89, 767–774.CrossRef Perlovich, G. L., Volkova, T. V., & Bauer-Brandl, A. (2007). Polymorphism of paracetamol: Relative stability of the monoclinic and orthorhombic phase revisited by sublimation and solution calorimetry. Journal of Thermal Analysis and Calorimetry, 89, 767–774.CrossRef
45.
go back to reference Gurunath, S., Pradeep Kumar, S., Basavaraj, N. K., & Patil, P. A. (2013). Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. Journal of Pharmacy Research, 6, 476–480.CrossRef Gurunath, S., Pradeep Kumar, S., Basavaraj, N. K., & Patil, P. A. (2013). Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. Journal of Pharmacy Research, 6, 476–480.CrossRef
46.
go back to reference Kachrimanis, K., Fucke, K., Noisternig, M., Siebenhaar, B., & Griesser, U. (2008). Effects of moisture and residual solvent on the phase stability of orthorhombic paracetamol. Pharmaceutical Research, 25, 1440–1449.CrossRef Kachrimanis, K., Fucke, K., Noisternig, M., Siebenhaar, B., & Griesser, U. (2008). Effects of moisture and residual solvent on the phase stability of orthorhombic paracetamol. Pharmaceutical Research, 25, 1440–1449.CrossRef
Metadata
Title
Analysis of Mechanisms for PVP-Active-Agent Formulation as in Supercritical Antisolvent Spray Process
Authors
Matthias Rossmann
Daniel Bassing
Iolanda De Marco
Valentina Prosapio
Ernesto Reverchon
Eberhard Schlücker
Andreas Braeuer
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-32370-1_24

Premium Partners