Skip to main content
Top

2018 | OriginalPaper | Chapter

9. Analysis of Nonlinear Wave Propagation in Hyperelastic Network Materials

Authors : Hilal Reda, Khaled ElNady, Jean-François Ganghoffer, Nikolas Karathanasopoulos, Yosra Rahali, Hassan Lakiss

Published in: Generalized Models and Non-classical Approaches in Complex Materials 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We analyze the acoustic properties of microstructured repetitive network material undergoing configuration changes leading to geometrical nonlinearities. The effective constitutive law of the homogenized network is evaluated successively as an effective first nonlinear 1D continuum, based on a strain driven incremental scheme written over the reference unit cell, taking into account the changes of the lattice geometry. The dynamical equations of motion are next written, leading to specific dispersion relations. The inviscid Burgers equation is obtained as a specific wave propagation equation for the first order effective continuum when the expression of the energy includes third order contributions, whereas a perturbation method is used to solve the dynamical properties for the effective medium including fourth order terms. This methodology is applied to analyze wave propagation within different microstructures, including the regular and reentrant hexagons, and plain weave textile pattern.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goda, I., Assidi, M., Ganghoffer, J.F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61, 2537–2565 (2013)CrossRef Goda, I., Assidi, M., Ganghoffer, J.F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61, 2537–2565 (2013)CrossRef
2.
go back to reference Goda, I., Ganghoffer, J.F.: Construction of first and second order grade anisotropic continuum media for 3D porous and textile composite structures. Compos. Struct. 141(141), 292–327 (2016)CrossRef Goda, I., Ganghoffer, J.F.: Construction of first and second order grade anisotropic continuum media for 3D porous and textile composite structures. Compos. Struct. 141(141), 292–327 (2016)CrossRef
3.
go back to reference Dos Reis, F., Ganghoffer, J.F.: Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 51, 314–321 (2012)CrossRef Dos Reis, F., Ganghoffer, J.F.: Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 51, 314–321 (2012)CrossRef
4.
go back to reference Raoult, A., Caillerie, D., Mourad, A.: Elastic lattices: equilibrium, invariant laws and homogenization. Ann. Univ. Ferrara 54, 297–318 (2008)MathSciNetCrossRef Raoult, A., Caillerie, D., Mourad, A.: Elastic lattices: equilibrium, invariant laws and homogenization. Ann. Univ. Ferrara 54, 297–318 (2008)MathSciNetCrossRef
5.
go back to reference Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)CrossRef Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)CrossRef
6.
go back to reference Warren, W.E., Kraynik, A.M., Stone, C.M.: A constitutive model for two-dimensional nonlinear elastic foams. J. Mech. Phys. Solids 37, 717–733 (1989)CrossRef Warren, W.E., Kraynik, A.M., Stone, C.M.: A constitutive model for two-dimensional nonlinear elastic foams. J. Mech. Phys. Solids 37, 717–733 (1989)CrossRef
7.
go back to reference Warren, W.E., Kraynik, A.M.: The nonlinear elastic behaviour of open-cell foams. Trans. ASME 58, 375–381 (1991)CrossRef Warren, W.E., Kraynik, A.M.: The nonlinear elastic behaviour of open-cell foams. Trans. ASME 58, 375–381 (1991)CrossRef
8.
go back to reference Wang, Y., Cuitino, A.M.: Three-dimensional nonlinear open cell foams with large deformations. J. Mech. Phys. Solids 48, 961–988 (2000)MathSciNetCrossRef Wang, Y., Cuitino, A.M.: Three-dimensional nonlinear open cell foams with large deformations. J. Mech. Phys. Solids 48, 961–988 (2000)MathSciNetCrossRef
9.
go back to reference Hohe, J., Becker, W.: Effective mechanical behavior of hyperelastic honeycombs and two dimensional model foams at finite strain. Int. J. Mech. Sci. 45, 891–913 (2003)CrossRef Hohe, J., Becker, W.: Effective mechanical behavior of hyperelastic honeycombs and two dimensional model foams at finite strain. Int. J. Mech. Sci. 45, 891–913 (2003)CrossRef
10.
go back to reference Janus-Michalska, M., Pęcherski, R.P.: Macroscopic properties of open-cell foams based on micromechanical modeling. Tech. Mech. Band, 23(Heft, 2–4), 221–231 (2003) Janus-Michalska, M., Pęcherski, R.P.: Macroscopic properties of open-cell foams based on micromechanical modeling. Tech. Mech. Band, 23(Heft, 2–4), 221–231 (2003)
11.
go back to reference Janus-Michalska, J.: Effective models describing elastic behavior of cellular materials. Arch. Metall. Mater. 50, 595–608 (2005) Janus-Michalska, J.: Effective models describing elastic behavior of cellular materials. Arch. Metall. Mater. 50, 595–608 (2005)
12.
go back to reference Janus-Michalska, J.: Hyperelastic behavior of cellular structures based on micromechanical modeling at small strain. Arch. Mech. 63(1), 3–23 (2011)MathSciNetMATH Janus-Michalska, J.: Hyperelastic behavior of cellular structures based on micromechanical modeling at small strain. Arch. Mech. 63(1), 3–23 (2011)MathSciNetMATH
13.
go back to reference Vigliotti, A., Deshpande, V.S., Pasini, D.: Nonlinear constitutive models for lattice materials. J. Mech. Phys. Solids 64, 44–60 (2014)MathSciNetCrossRef Vigliotti, A., Deshpande, V.S., Pasini, D.: Nonlinear constitutive models for lattice materials. J. Mech. Phys. Solids 64, 44–60 (2014)MathSciNetCrossRef
14.
go back to reference El Nady, K., Ganghoffer, J.F.: Computation of the effective mechanical response of biological networks accounting for large configuration changes. J. Mech. Behave. Biomed. Mat. 58, 28–44 (2015)CrossRef El Nady, K., Ganghoffer, J.F.: Computation of the effective mechanical response of biological networks accounting for large configuration changes. J. Mech. Behave. Biomed. Mat. 58, 28–44 (2015)CrossRef
15.
go back to reference El Nady, K., Goda, I., Ganghoffer, J.F.: Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comput. Mech. 58, 1–23 (2016)MathSciNetCrossRef El Nady, K., Goda, I., Ganghoffer, J.F.: Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comput. Mech. 58, 1–23 (2016)MathSciNetCrossRef
16.
go back to reference Langley, R.S.: The response of two dimensional periodic structures to point harmonic forcing. J. Sound Vib. 197, 447–469 (1996)CrossRef Langley, R.S.: The response of two dimensional periodic structures to point harmonic forcing. J. Sound Vib. 197, 447–469 (1996)CrossRef
17.
go back to reference Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006)CrossRef Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006)CrossRef
18.
go back to reference Gonella, S., Ruzzene, M.: Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. J. Sound Vib. 312, 125–139 (2008)CrossRef Gonella, S., Ruzzene, M.: Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. J. Sound Vib. 312, 125–139 (2008)CrossRef
19.
go back to reference Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Compos. Struct. 141, 328–345 (2016)CrossRef Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Compos. Struct. 141, 328–345 (2016)CrossRef
20.
go back to reference Bhatnagar, P.L.: Nonlinear Waves in One-dimensional Dispersive Systems. Clarendon Press, Oxford (1979)MATH Bhatnagar, P.L.: Nonlinear Waves in One-dimensional Dispersive Systems. Clarendon Press, Oxford (1979)MATH
21.
go back to reference Ogden, R.W., Roxburgh, D.G.: The effect of pre-stress on the vibration and stability of elastic plates. Int. J. Eng. Sci. 31, 1611–1639 (1993)MathSciNetCrossRef Ogden, R.W., Roxburgh, D.G.: The effect of pre-stress on the vibration and stability of elastic plates. Int. J. Eng. Sci. 31, 1611–1639 (1993)MathSciNetCrossRef
22.
go back to reference Norris, A.N.: Finite amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, pp. 263–277. Academic Press, San Diego (1998) Norris, A.N.: Finite amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, pp. 263–277. Academic Press, San Diego (1998)
23.
go back to reference Porubov, A.: Amplification of Nonlinear Strain Waves in Solids, vol. 9. World Scientific (2003) Porubov, A.: Amplification of Nonlinear Strain Waves in Solids, vol. 9. World Scientific (2003)
24.
go back to reference Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation analysis in 2D nonlinear hexagonal periodic networks based on second order gradient nonlinear constitutive models. Int. J. Nonlinear Mech. 87, 85–96 (2016)CrossRef Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation analysis in 2D nonlinear hexagonal periodic networks based on second order gradient nonlinear constitutive models. Int. J. Nonlinear Mech. 87, 85–96 (2016)CrossRef
25.
go back to reference Russell, J.S.: Report on waves. In: Fourteenth Meeting of the British Association for the Advancement of Science (1844) Russell, J.S.: Report on waves. In: Fourteenth Meeting of the British Association for the Advancement of Science (1844)
26.
go back to reference Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. Deuxième Série 17, 55–108 (1872) Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. Deuxième Série 17, 55–108 (1872)
27.
go back to reference Korteweg, D.J., Vries, G.D.: On the change of form of long waves ad-vancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443 (1985) Korteweg, D.J., Vries, G.D.: On the change of form of long waves ad-vancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443 (1985)
28.
go back to reference Benjamin, B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London 272, 47–78 (1972)MathSciNetCrossRef Benjamin, B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London 272, 47–78 (1972)MathSciNetCrossRef
29.
go back to reference Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MathSciNetCrossRef Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MathSciNetCrossRef
30.
go back to reference Manktelow, L.K., Narisetti, R.K., Leamy, J.M., Ruzzene, M.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech. Syst. Signal Process. 39, 32–46 (2013)CrossRef Manktelow, L.K., Narisetti, R.K., Leamy, J.M., Ruzzene, M.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech. Syst. Signal Process. 39, 32–46 (2013)CrossRef
31.
go back to reference Maradudin, A.A.: Nonequilibrium Phonon Dynamics. Bron, W.E. (ed.), p. 395. Plenum, New York (1985) Maradudin, A.A.: Nonequilibrium Phonon Dynamics. Bron, W.E. (ed.), p. 395. Plenum, New York (1985)
32.
go back to reference Hao, Y., Singhsomroje, W., Maris, H.J.: Phys. B 316–317, 147–149 (2002) Hao, Y., Singhsomroje, W., Maris, H.J.: Phys. B 316317, 147–149 (2002)
33.
go back to reference Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Nonlinear dynamical analysis of 3D textiles based on second gradient homogenized media. Compos. Struct. 154, 538–555 (2016)CrossRef Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Nonlinear dynamical analysis of 3D textiles based on second gradient homogenized media. Compos. Struct. 154, 538–555 (2016)CrossRef
Metadata
Title
Analysis of Nonlinear Wave Propagation in Hyperelastic Network Materials
Authors
Hilal Reda
Khaled ElNady
Jean-François Ganghoffer
Nikolas Karathanasopoulos
Yosra Rahali
Hassan Lakiss
Copyright Year
2018
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-77504-3_9

Premium Partners