Skip to main content
Top

2021 | OriginalPaper | Chapter

12. Analysis of Novel Corona Virus (COVID-19) Pandemic with Fractional-Order Caputo–Fabrizio Operator and Impact of Vaccination

Authors : A. George Maria Selvam, R. Janagaraj, R. Dhineshbabu

Published in: Mathematical Analysis for Transmission of COVID-19

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Within a very short period, the corona infection virus (COVID-19) has created a global emergency situation by spreading worldwide. This virus has dissimilar effects in different geographical regions. In the beginning of the spread, the number of new cases of active corona virus has shown exponential growth across the globe. At present, for such infection, there is no vaccination or anti-viral medicine specific to the recent corona virus infection. Mathematical formulation of infection models is exceptionally successful to comprehend epidemiological models of ailments, just as it causes us to take vital proportions of general wellbeing interruptions to control the disease transmission and the spread. This work based on a new mathematical model analyses the dynamic behaviour of novel corona virus (COVID-19) using Caputo–Fabrizio fractional derivative. A new modified SEIRQ compartment model is developed to discuss various dynamics. The COVID-19 transmission is studied by varying reproduction number. The basic number of reproduction \(R_{0}\) is determined by applying the next generation matrix. The equilibrium points for disease-free and endemic states are computed with the help of basic reproduction number \(R_{0}\) to check the stability property. The Picard approximation and Banach’s fixed point theorem based on iterative Laplace transform are useful in establishing the existence and stability behaviour of the fractional-order system. Finally, numerical computations of the COVID-19 fractional-order system are presented to analyse the dynamical behaviour of the solutions of the model. Also, a fractional-order SEIRQ COVID-19 model with vaccinated people has also been formulated and its dynamics with impact on the propagation behaviour is studied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Al-qaness M. A. A. et al. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of Clinical Medicine, 9, 674. Al-qaness M. A. A. et al. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of Clinical Medicine, 9, 674.
5.
go back to reference Vyasarayani C. P. et al. (2020). New approximations, and policy implications, from a delayed dynamic model of a fast pandemic, arXiv preprint 2020: arXiv:2004.03878v1. Vyasarayani C. P. et al. (2020). New approximations, and policy implications, from a delayed dynamic model of a fast pandemic, arXiv preprint 2020: arXiv:​2004.​03878v1.
6.
go back to reference Biswas, K. et al. (2020). Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network, arXiv preprint 2020: arXiv:2003.07063v1. Biswas, K. et al. (2020). Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network, arXiv preprint 2020: arXiv:​2003.​07063v1.
7.
go back to reference Nita, H. (2020). Shah, Nisha Sheoran, and Ekta Jayswal, Z-Control on COVID-19-Exposed Patients in Quarantine. International Journal of Differential Equations, 2020, 1–11. Nita, H. (2020). Shah, Nisha Sheoran, and Ekta Jayswal, Z-Control on COVID-19-Exposed Patients in Quarantine. International Journal of Differential Equations, 2020, 1–11.
13.
18.
go back to reference Daley, D. J., & Gani, J. (1999). Epidemic modelling: An introduction. Cambridge Studies in Mathematical Biology, Cambridge University Press. Daley, D. J., & Gani, J. (1999). Epidemic modelling: An introduction. Cambridge Studies in Mathematical Biology, Cambridge University Press.
19.
go back to reference Khalil, R., Al Horani M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional Derivative. Journal of Computational and Applied Mathematics, 264, 65–70.MathSciNetCrossRef Khalil, R., Al Horani M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional Derivative. Journal of Computational and Applied Mathematics, 264, 65–70.MathSciNetCrossRef
20.
go back to reference Samko, G., Kilbas, A., & Marichev, O. (1993). Fractional integrals and derivatives: Theory and applications, Gordon and Breach. Samko, G., Kilbas, A., & Marichev, O. (1993). Fractional integrals and derivatives: Theory and applications, Gordon and Breach.
21.
go back to reference Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73–85. Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73–85.
22.
go back to reference Losada, J., & Nieto, J. J. (2015). Properties of the new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 87–92. Losada, J., & Nieto, J. J. (2015). Properties of the new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 87–92.
23.
go back to reference Shaikh, A. M., Shaikh, I. N., & Nisar, K. S. (2020). A mathematical model of COVID-19 using fractional derivative: Outbreak in India with dynamics of transmission and control. Advances in Difference Equations, 2020(373), 1–19. Shaikh, A. M., Shaikh, I. N., & Nisar, K. S. (2020). A mathematical model of COVID-19 using fractional derivative: Outbreak in India with dynamics of transmission and control. Advances in Difference Equations, 2020(373), 1–19.
24.
go back to reference Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: Elsevier.MATH Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: Elsevier.MATH
25.
go back to reference Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.MATH Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.MATH
26.
go back to reference Mouaouine, A., Boukhouima, A., Hattaf, K., & Yousfi, N. (2018). A fractional order SIR epidemic model with nonlinear incidence rate. Advances in Difference Equations, 2018, 160. Mouaouine, A., Boukhouima, A., Hattaf, K., & Yousfi, N. (2018). A fractional order SIR epidemic model with nonlinear incidence rate. Advances in Difference Equations, 2018, 160.
27.
go back to reference Sene, N. (2020). SIR epidemic model with Mittag-Leffler fractional derivative. Chaos, Solitons & Fractals, 137, 109833.MathSciNetCrossRef Sene, N. (2020). SIR epidemic model with Mittag-Leffler fractional derivative. Chaos, Solitons & Fractals, 137, 109833.MathSciNetCrossRef
28.
go back to reference Ghanbari, B., & Djilali, S. (2020). Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Mathematical Methods in the Applied Sciences, 43, 1736–1752.MathSciNetCrossRef Ghanbari, B., & Djilali, S. (2020). Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Mathematical Methods in the Applied Sciences, 43, 1736–1752.MathSciNetCrossRef
29.
go back to reference Kumar, S., Kumar, R., Cattani, C., & Samet, B. (2020). Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals, 135, 109811.MathSciNetCrossRef Kumar, S., Kumar, R., Cattani, C., & Samet, B. (2020). Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals, 135, 109811.MathSciNetCrossRef
30.
go back to reference Aguilar, J. F. G. et al. (2016). Analytical and numerical solutions of electrical circuits described by fractional derivatives. Applied Mathematical Modelling, 40, 9079–9094. Aguilar, J. F. G. et al. (2016). Analytical and numerical solutions of electrical circuits described by fractional derivatives. Applied Mathematical Modelling, 40, 9079–9094.
31.
go back to reference Yuzbasi, S. (2015). A collocation method for numerical solutions of fractional-order logistic population model. International Journal of Biomathematics, 9(2), 31–45.MathSciNet Yuzbasi, S. (2015). A collocation method for numerical solutions of fractional-order logistic population model. International Journal of Biomathematics, 9(2), 31–45.MathSciNet
32.
go back to reference Diethelm, K. (2013). A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynamics, 71, 613–619.MathSciNetCrossRef Diethelm, K. (2013). A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynamics, 71, 613–619.MathSciNetCrossRef
33.
go back to reference Ghanbari, B., Kumar, S., & Kumar, R. (2020). A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos, Solitons & Fractals, 133, 109619.MathSciNetCrossRef Ghanbari, B., Kumar, S., & Kumar, R. (2020). A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos, Solitons & Fractals, 133, 109619.MathSciNetCrossRef
34.
go back to reference Alshabanat, A., Jleli, M., Kumar, S., & Samet, B. (2020). Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits. Front. Phys. Alshabanat, A., Jleli, M., Kumar, S., & Samet, B. (2020). Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits. Front. Phys.
35.
go back to reference Khan, Y., Wu, Q., Faraz, N., Yildirim, A., & Madani, M. (2012). A new fractional analytical approach via a modified Riemann-Liouville derivative. Applied Mathematics Letters, 25, 1340–1346.MathSciNetCrossRef Khan, Y., Wu, Q., Faraz, N., Yildirim, A., & Madani, M. (2012). A new fractional analytical approach via a modified Riemann-Liouville derivative. Applied Mathematics Letters, 25, 1340–1346.MathSciNetCrossRef
36.
go back to reference Allen, L. J. et al. (2008). Mathematical epidemiology, Berlin, Germany: Springer. Allen, L. J. et al. (2008). Mathematical epidemiology, Berlin, Germany: Springer.
37.
go back to reference Barbashin, E. A. (1970). Introduction to the theory of stability, Groningen. The Netherlands: Walters-Noordhoff. Barbashin, E. A. (1970). Introduction to the theory of stability, Groningen. The Netherlands: Walters-Noordhoff.
38.
go back to reference Robinson, R. C. (2004). An introduction to dynamical systems: Continuous and discrete. Englewood Cliffs, NJ, USA: Prentice-Hall. Robinson, R. C. (2004). An introduction to dynamical systems: Continuous and discrete. Englewood Cliffs, NJ, USA: Prentice-Hall.
39.
go back to reference LaSalle, J. P. (1976). The stability of dynamical systems (Regional Conference Series in Applied Mathematics). Philadelphia, PA, USA: SIAM. LaSalle, J. P. (1976). The stability of dynamical systems (Regional Conference Series in Applied Mathematics). Philadelphia, PA, USA: SIAM.
40.
go back to reference Wang, J., Zhou, Y., & Medved, M. (2012). Picard and weakly Picard operator’s technique for nonlinear differential equations in Banach spaces. Journal of Mathematical Analysis and Applications, 389(1), 261–274.MathSciNetCrossRef Wang, J., Zhou, Y., & Medved, M. (2012). Picard and weakly Picard operator’s technique for nonlinear differential equations in Banach spaces. Journal of Mathematical Analysis and Applications, 389(1), 261–274.MathSciNetCrossRef
41.
go back to reference Petras, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. New York, USA: Springer. Petras, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. New York, USA: Springer.
42.
go back to reference Sample Registration System (SRS) Bulletin, 53(1), (2020). Sample Registration System (SRS) Bulletin, 53(1), (2020).
Metadata
Title
Analysis of Novel Corona Virus (COVID-19) Pandemic with Fractional-Order Caputo–Fabrizio Operator and Impact of Vaccination
Authors
A. George Maria Selvam
R. Janagaraj
R. Dhineshbabu
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6264-2_12

Premium Partners