Skip to main content
Top

2014 | OriginalPaper | Chapter

Analysis of Two-Phase Flow in the Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

Authors : Andrew Gordon, Michael Vynnycky

Published in: Progress in Industrial Mathematics at ECMI 2012

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The last decade has seen a proliferation of modelling activity on the polymer electrolyte fuel cell (PEFC); an important subset of this activity is the modelling of the two-phase (gas/liquid) flow that occurs in the porous gas diffusion layer (GDL) on the cathode (Djilali, Energy 32:269–280, 2007; Gurau and Mann, SIAM J. Appl. Maths 70:410–454, 2009). The prevailing approach employs a generalized form of Darcy’s law, which has been widely used over the last several decades to analyze the movement of oil and water in soils and porous rock (Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972). Applied to water transport in fuel cells, the Darcy model characterizes the response of the porous material by the capillary pressure, the gas and liquid phase relative permeabilities, and the effective gas diffusion coefficient, all of which depend on the fraction of the local pore volume occupied by liquid water; an additional feature is that the porous medium can be either hydrophobic or hydrophilic. The majority of approaches have, however, been primarily numerical, which has obscured some of the properties of the model. Here, using asymptotic methods, we extend earlier work (Vynnycky, Appl. Math. Comp. 189:1560–1575, 2007) to demonstrate how the degree of water saturation depends on the liquid phase relative permeability, as well as how the model behaves when the GDL is only just hydrophilic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)MATH Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)MATH
2.
go back to reference Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002) Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)
3.
go back to reference Djilali, N.: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32, 269–280 (2007)CrossRef Djilali, N.: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32, 269–280 (2007)CrossRef
4.
go back to reference Gurau, V., Mann, J.A.: A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells. SIAM J. Appl. Maths 70, 410–454 (2009)CrossRefMATHMathSciNet Gurau, V., Mann, J.A.: A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells. SIAM J. Appl. Maths 70, 410–454 (2009)CrossRefMATHMathSciNet
5.
go back to reference Nam, J.H., Kaviany, M.: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int. J. Heat Mass Transf. 46, 4595–4611 (2003)CrossRef Nam, J.H., Kaviany, M.: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int. J. Heat Mass Transf. 46, 4595–4611 (2003)CrossRef
6.
go back to reference Natarajan, D., Nguyen, T.V.: A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J. Electrochem. Soc. 148, A1324–A1335 (2001)CrossRef Natarajan, D., Nguyen, T.V.: A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J. Electrochem. Soc. 148, A1324–A1335 (2001)CrossRef
7.
go back to reference Natarajan, D., Nguyen, T.V.: Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J. Power Sources 115, 66–80 (2003)CrossRef Natarajan, D., Nguyen, T.V.: Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J. Power Sources 115, 66–80 (2003)CrossRef
8.
go back to reference Pasaogullari, U., Wang, C.Y.: Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A399–A406 (2004)CrossRef Pasaogullari, U., Wang, C.Y.: Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A399–A406 (2004)CrossRef
9.
go back to reference Qin, C., Rensink, D., Fell, S., Hassanizadeh, S.M.: Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell. J. Power Sources 197, 136–144 (2011)CrossRef Qin, C., Rensink, D., Fell, S., Hassanizadeh, S.M.: Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell. J. Power Sources 197, 136–144 (2011)CrossRef
10.
go back to reference Udell, K.S.: Heat transfer in porous media heated from above with evaporation, condensation and capillary effects. J. Heat Transf. 105, 485–492 (1983)CrossRef Udell, K.S.: Heat transfer in porous media heated from above with evaporation, condensation and capillary effects. J. Heat Transf. 105, 485–492 (1983)CrossRef
11.
go back to reference Vynnycky, M.: On the modelling of two-phase flow in the cathode gas diffusion layer of a polymer electrolyte fuel cell. Appl. Math. Comput. 189, 1560–1575 (2007)CrossRefMATHMathSciNet Vynnycky, M.: On the modelling of two-phase flow in the cathode gas diffusion layer of a polymer electrolyte fuel cell. Appl. Math. Comput. 189, 1560–1575 (2007)CrossRefMATHMathSciNet
Metadata
Title
Analysis of Two-Phase Flow in the Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell
Authors
Andrew Gordon
Michael Vynnycky
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-05365-3_24

Premium Partners