Skip to main content
Top

2022 | OriginalPaper | Chapter

Analytical Study of Fluid Pressure-Sensing Mechanism in Microchannel for Microfluidic Device

Authors : Ankur Saxena, Mahesh Kumar, Kulwant Singh

Published in: Technology Innovation in Mechanical Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper explores the concept of analytical study fluid–structure interaction, which involves the analysis of fluid flows in microchannel and pressure-sensing mechanism through microcantilever. The present research analysis of microcantilever displacement, deforming geometry at a different velocity, computation pressure, stress of cantilever at different widths and heights. A microcantilever surface displacement occurs when the fluid force is applied on it, the fluid flows at 3.33 cm/sec across microchannel, and microcantilever structure deformed due to its low value of young modulus 200 kPa and Poisson Ratio 0.23. The fluidic pressure-sensing mechanism optimized for design and selecting geometry using finite element modeling. It has been found that among all the designs, Model 4 design has the highest displacement 15.5 μm at a velocity of 0.0028 cm/sec and pressure is 400 KPa at t = 4 s. The design and simulation process has been done by using COMSOL Multiphysics 5.3a.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, K., Tostado, C.P., Xu, J.H., Lu, Y.C., Luo, G.S.: Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device. Lab Chip 14(7), 1357–1366 (2014)CrossRef Xu, K., Tostado, C.P., Xu, J.H., Lu, Y.C., Luo, G.S.: Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device. Lab Chip 14(7), 1357–1366 (2014)CrossRef
2.
go back to reference Li, X.J., Zhou, Y. (eds.): Microfluidic devices for biomedical applications. Elsevier (2013) Li, X.J., Zhou, Y. (eds.): Microfluidic devices for biomedical applications. Elsevier (2013)
3.
go back to reference Liu, M.C., Shih, H.C., Wu, J.G., Weng, T.W., Wu, C.Y., Lu, J.C., Tung, Y.C.: Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip 13(9), 1743–1753 (2013)CrossRef Liu, M.C., Shih, H.C., Wu, J.G., Weng, T.W., Wu, C.Y., Lu, J.C., Tung, Y.C.: Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip 13(9), 1743–1753 (2013)CrossRef
4.
go back to reference Amirante, R., Casavola, C., Distaso, E., Tamburrano, P.: Towards the development of the in-cylinder pressure measurement based on the strain gauge technique for internal combustion engines (No. 2015-24-2419). SAE Technical Paper (2015) Amirante, R., Casavola, C., Distaso, E., Tamburrano, P.: Towards the development of the in-cylinder pressure measurement based on the strain gauge technique for internal combustion engines (No. 2015-24-2419). SAE Technical Paper (2015)
5.
go back to reference Saxena, A., Agrawal, V.K.: Comparative study of Cantilever RF MEMS switch. Mater. Today: Proc. 4(9), 10328–10331 (2017) Saxena, A., Agrawal, V.K.: Comparative study of Cantilever RF MEMS switch. Mater. Today: Proc. 4(9), 10328–10331 (2017)
6.
go back to reference Abe, K., Suzuki, K., Citterio, D.: Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80(18), 6928–6934 (2008)CrossRef Abe, K., Suzuki, K., Citterio, D.: Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80(18), 6928–6934 (2008)CrossRef
7.
go back to reference Li, S., Ma, Z., Cao, Z., Pan, L., Shi, Y.: Advanced wearable microfluidic sensors for healthcare monitoring. Small 16(9), 1903822 (2020)CrossRef Li, S., Ma, Z., Cao, Z., Pan, L., Shi, Y.: Advanced wearable microfluidic sensors for healthcare monitoring. Small 16(9), 1903822 (2020)CrossRef
8.
go back to reference Rao, K.S., Sravani, K.G., Yugandhar, G., Rao, G.V., Mani, V.N.: Design and analysis of fluid structure interaction in a horizontal micro channel. Procedia Mater. Sci. 10, 768–788 (2015)CrossRef Rao, K.S., Sravani, K.G., Yugandhar, G., Rao, G.V., Mani, V.N.: Design and analysis of fluid structure interaction in a horizontal micro channel. Procedia Mater. Sci. 10, 768–788 (2015)CrossRef
9.
go back to reference Hoera, C., Kiontke, A., Pahl, M., Belder, D.: A chip-integrated optical microfluidic pressure sensor. Sens. Actuators, B Chem. 255, 2407–2415 (2018)CrossRef Hoera, C., Kiontke, A., Pahl, M., Belder, D.: A chip-integrated optical microfluidic pressure sensor. Sens. Actuators, B Chem. 255, 2407–2415 (2018)CrossRef
10.
go back to reference Gavalas, I., Fotiadis, D.I. (2019uly). Computational evaluation of suspended microcantilever and microfluidic channel. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1171–1174. IEEE, July 2019 Gavalas, I., Fotiadis, D.I. (2019uly). Computational evaluation of suspended microcantilever and microfluidic channel. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1171–1174. IEEE, July 2019
11.
go back to reference Ashby, C.I.H., Okandan, M., Michalske, T.A., Sounart, T.L., Matzke, C.M.: MEMS in microfluidic channels (No. SAND2004-1158). Sandia National Laboratories (2004) Ashby, C.I.H., Okandan, M., Michalske, T.A., Sounart, T.L., Matzke, C.M.: MEMS in microfluidic channels (No. SAND2004-1158). Sandia National Laboratories (2004)
12.
go back to reference Arya, S., Sharma, V., Shimi, S.L.: Design and fabrication of micro-channels based fluid viscosity sensor. ISSS J. Micro Smart Syst. 6(2), 119–125 (2017)CrossRef Arya, S., Sharma, V., Shimi, S.L.: Design and fabrication of micro-channels based fluid viscosity sensor. ISSS J. Micro Smart Syst. 6(2), 119–125 (2017)CrossRef
13.
go back to reference Nezhad, A.S., Ghanbari, M., Agudelo, C.G., Packirisamy, M., Bhat, R.B., Geitmann, A.: PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sens. J. 13(2), 601–609 (2012)CrossRef Nezhad, A.S., Ghanbari, M., Agudelo, C.G., Packirisamy, M., Bhat, R.B., Geitmann, A.: PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sens. J. 13(2), 601–609 (2012)CrossRef
14.
go back to reference Temam, R.: Navier-Stokes equations: theory and numerical analysis, vol. 343. American Mathematical Soc. (2001) Temam, R.: Navier-Stokes equations: theory and numerical analysis, vol. 343. American Mathematical Soc. (2001)
15.
go back to reference Das, S., Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta 559(1), 15–24 (2006)CrossRef Das, S., Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta 559(1), 15–24 (2006)CrossRef
16.
go back to reference Stein, K., Benney, R., Tezduyar, T., Potvin, J.: Fluid–structure interactions of a cross parachute: numerical simulation. Comput. Methods Appl. Mech. Eng. 191(6–7), 673–687 (2001)CrossRef Stein, K., Benney, R., Tezduyar, T., Potvin, J.: Fluid–structure interactions of a cross parachute: numerical simulation. Comput. Methods Appl. Mech. Eng. 191(6–7), 673–687 (2001)CrossRef
17.
go back to reference Hao, P.F., He, F., Zhu, K.Q.: Flow characteristics in a trapezoidal silicon microchannel. J. Micromech. Microeng. 15(6), 1362 (2005)CrossRef Hao, P.F., He, F., Zhu, K.Q.: Flow characteristics in a trapezoidal silicon microchannel. J. Micromech. Microeng. 15(6), 1362 (2005)CrossRef
18.
go back to reference Basak, S., Raman, A., Garimella, S.V:. Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J. Appl. Phys. 99(11), 114906 (2006) Basak, S., Raman, A., Garimella, S.V:. Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J. Appl. Phys. 99(11), 114906 (2006)
Metadata
Title
Analytical Study of Fluid Pressure-Sensing Mechanism in Microchannel for Microfluidic Device
Authors
Ankur Saxena
Mahesh Kumar
Kulwant Singh
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-7909-4_97