Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Anti-periodic oscillations of bidirectional associative memory (BAM) neural networks with leakage delays

Authors: Changjin Xu, Lilin Chen, Ting Guo

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this article, we discuss anti-periodic oscillations of BAM neural networks with leakage delays. A sufficient criterion guaranteeing the existence and exponential stability of the involved model is presented by utilizing mathematic analysis methods and Lyapunov ideas. The theoretical results of this article are novel and are a key supplement to some earlier studies.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In the past several decades, the dynamics of BAM neural networks has been widely investigated for their essential applications in classification, pattern recognition, optimization, signal and image processing, and so on [141]. In 1987, Kosko [42] proposed the following BAM neural network:
$$\begin{aligned} \textstyle\begin{cases} \frac{du_{i}(t)}{dt}=-a_{i}u_{i}(t)+\sum_{j=1}^{n}a_{ij}f_{j}(v_{j}(t-\sigma _{j}(t)))+I_{i},\\ \frac{dv_{i}(t)}{dt}=-b_{i}v_{i}(t)+\sum_{j=1}^{n}b_{ij}g_{j}(u_{j}(t-\tau_{j}(t)))+J_{i}, \end{cases}\displaystyle \end{aligned}$$
(1.1)
where \(i=1,2,\ldots,n,t>0\). Here, \(a_{i}>0,b_{i}>0\) denote the time scales of the respective layers of the network; \(-a_{i}u_{i}(t)\) and \(-b_{i}v_{i}(t)\) stand for the stabilizing negative feedback of the model. Noticing that the leakage delay often appears in the negative feedback term of neural networks (see [4347]), Gopalsmay [48] studied the stability of the equilibrium and periodic solutions for the following BAM neural network:
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}(t)}{dt}=-a_{i}x_{i}(t-\tau_{i}^{(i)})+\sum_{j=1}^{n}a_{ij}f_{j}(y_{j}(t-\sigma_{j}^{(2)}))+I_{i},\\ \frac{dy_{i}(t)}{dt}=-b_{i}y_{i}(t-\tau_{i}^{(2)})+\sum_{j=1}^{n}b_{ij}g_{j}(x_{j}(t-\sigma_{j}^{(1)}))+J_{i}, \end{cases}\displaystyle \end{aligned}$$
(1.2)
where \(i=1,2,\ldots,n,t>0\). Since the delays in neural networks are usually time-varying in the real world, Liu [49] discussed the global exponential stability for the following general BAM neural network with time-varying leakage delays:
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}(t)}{dt}=-a_{i}x_{i}(t-\delta_{i}(t))+\sum_{j=1}^{n}a_{ij}f_{j}(y_{j}(t-\sigma_{ij}(t))+I_{i},\\ \frac{dy_{i}(t)}{dt}=-b_{i}y_{i}(t-\eta_{i}(t)+\sum_{j=1}^{n}b_{ij}g_{j}(x_{j}(t-\tau _{ij}(t))+J_{i}. \end{cases}\displaystyle \end{aligned}$$
(1.3)
However, so far, there have been rare reports on the existence and exponential stability of anti-periodic solutions of neural networks, especially for neural networks with leakage delays. Furthermore, the existence of anti-periodic solutions can be applied to help better describe the dynamical properties of nonlinear systems [4965]. So we think that the investigation on the existence and stability of anti-periodic solutions for neural networks with leakage delays has significant value. Inspired by the ideas and considering the change of system parameters in time, we can modify neural network model (1.3) as follows:
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}(t)}{dt}=-a_{i}x_{i}(t-\delta_{i}(t))+\sum_{j=1}^{n}a_{ij}(t)f_{j}(y_{j}(t-\sigma_{ij}(t)))+I_{i}(t),\\ \frac{dy_{i}(t)}{dt}=-b_{i}y_{i}(t-\eta_{i}(t))+\sum_{j=1}^{n}b_{ij}(t)g_{j}(x_{j}(t-\tau_{ij}(t)))+J_{i}(t). \end{cases}\displaystyle \end{aligned}$$
(1.4)
The main objective of this article is to analyze the exponential stability behavior of anti-periodic oscillations of (1.4). Based on the fundamental solution matrix, Lyapunov function, and fundamental function sequences, we establish a sufficient condition ensuring the existence and global exponential stability of anti-periodic solutions of (1.4). The derived findings can be used directly to numerous specific networks. Besides, computer simulations are performed to support the obtained predictions. Our findings are a good complement to the work of Gopalsmay [48] and Liu [49].
The paper is planned as follows. In Sect. 2, several notations and preliminary results are prepared. In Sect. 3, we give a sufficient condition for the existence and global exponential stability of anti-periodic solution of (1.4). In Sect. 4, we present an example to show the correctness of the obtained analytic findings.
Remark 1.1
A time delay that exists in the negative feedback term (or called leakage term or forgetting term) of neural networks is called leakage delay. If there exists an anti-periodic solution in a dynamical system, then we can say that the system has anti-periodic oscillations.

2 Preliminary results

In this segment, several notations and lemmas will be given.
For any vector \(V=(v_{1},v_{2},\dots,v_{n})^{T}\) and matrix \(D=(d_{ij})_{n\times{n}}\), we define the norm as
$$\Vert V \Vert = \Biggl(\sum_{i=1}^{n}v_{i}^{2} \Biggr)^{\frac{1}{2}},\qquad \Vert D \Vert = \Biggl(\sum _{i=1}^{n}d_{ij}^{2} \Biggr)^{\frac{1}{2}}, $$
respectively. Let
$$\begin{aligned} &\tau=\Bigl\{ \sup_{t\in{R}}\max_{1\leq{i}\leq{n}} \delta_{i}(t),\sup_{t\in {R}}\max_{1\leq{i}\leq{n}} \eta_{i}(t), \sup_{t\in{R}}\max_{1\leq{i,j}\leq {n}} \sigma_{ij}(t),\sup_{t\in{R}}\max_{1\leq{i,j}\leq{n}} \tau_{ij}(t)\Bigr\} , \\ &\varphi(s)=\bigl(\varphi_{1}(s),\varphi_{2}(s),\ldots, \varphi_{n}(s)\bigr)^{T},\qquad \psi(s)=\bigl(\psi_{1}(s), \psi_{2}(s),\ldots,\psi_{n}(s)\bigr)^{T}, \end{aligned}$$
where \(\varphi_{i}(s)\in{C}([-\tau,0],R), \psi_{i}(s)\in{C}([-\tau,0],R),i=1,2,\ldots,n\), we define
$$\Vert \varphi \Vert =\sup_{-\tau\leq{s}\leq0} \Biggl(\sum _{i=1}^{n} \bigl\vert \varphi _{i}(s) \bigr\vert ^{2} \Biggr)^{\frac{1}{2}}, \qquad \Vert \psi \Vert =\sup _{-\tau\leq{s}\leq0} \Biggl(\sum_{i=1}^{n} \bigl\vert \psi_{i}(s) \bigr\vert ^{2} \Biggr)^{\frac{1}{2}}. $$
We assume that system (1.4) always satisfies the following initial conditions:
$$\begin{aligned} \textstyle\begin{cases} x_{i0}=\varphi_{i}(s),& s\in[-\tau,0],\\ y_{i0}=\psi_{i}(s),& s\in[-\tau,0]. \end{cases}\displaystyle \end{aligned}$$
(2.1)
Let \(x(t)=(x_{1}(t),x_{2}(t),\ldots,x_{n}(t))^{T}, y(t)=(y_{1}(t),y_{2}(t),\ldots,y_{n}(t))^{T}\) be the solution of system (1.4) with initial conditions (2.1). We say the solution \(x(t)=(x_{1}(t),x_{2}(t),\ldots,x_{n}(t))^{T}, y(t)=(y_{1}(t),y_{2}(t),\ldots,y_{n}(t))^{T}\) is T-anti-periodic on \(R^{2n}\) if \(x_{i}(t+T)=-x_{i}(t), y_{i}(t+T)=-y_{i}(t)\) for all \(t\in{R}\) and \(i=1,2,\dots,n\), where T is a positive constant.
Throughout this paper, for \(i,j=1,2,\ldots,n\), it will be assumed that there exist constants such that
$$\begin{aligned} &\delta_{i}^{+}=\sup_{t\in{R}} \delta_{i}(t), \qquad \eta_{i}^{+}=\sup _{t\in{R}}\eta_{i}(t),\qquad a_{ij}^{+}= \sup_{t\in{R}}a_{ij}(t), \\ & b_{ij}^{+}= \sup_{t\in{R}}b_{ij}(t),\qquad \tau_{ij}^{+}= \sup_{t\in{R}}\tau_{ij}(t), \qquad \sigma_{ij}^{+}= \sup_{t\in{R}}\sigma_{ij}(t) \end{aligned}$$
and \(t-\delta_{i}(t)>0, t-\eta_{i}(t)>0\).
We also assume that the following conditions hold.
(H1) For \(j=1,2,\ldots,n\), there exist constants \(L_{jf}>0, L_{jg}>0, M_{j}^{f}>0\), and \(M_{j}^{g}>0\) such that
$$\textstyle\begin{cases} \vert f_{j}(u )-f_{j}(v ) \vert \leq L_{jf} \vert u -v \vert , \quad \vert f_{j}(u) \vert < M_{j}^{f},\\ \vert g_{j}(u )-g_{j}(v ) \vert \leq L_{jg} \vert u -v \vert ,\quad \vert g_{j}(u) \vert < M_{j}^{g}, \end{cases} $$
for all \(u, v \in{R}\).
(H2) For all \(t,u\in{R}\) and \(i,j=1,2,\ldots,n\),
$$\textstyle\begin{cases} a_{ij}(t+T)f_{j}(u)=-a_{ij}(t)f_{j}(-u),\qquad b_{ij}(t+T)g_{j}(u)=-b_{ij}(t)g_{j}(-u),\\ \delta_{i}(t+T)=\delta_{i}(t),\qquad \eta_{i}(t+T)=\eta_{i}(t),\qquad \sigma_{ij}(t+T)=\sigma_{ij}(t),\\ \tau_{ij}(t+T)=\tau_{ij}(t),\qquad I_{i}(t+T)=-I_{i}(t),\qquad J_{i}(t+T)=-J_{i}(t), \end{cases} $$
where T is a positive constant.
It is clear that the conditions can be fulfilled; for example, let \(a_{ij}(t)=0.2 \vert \cos t \vert , f_{j}(u)=u^{2j-1},i,j=1,2,\ldots,n\), then we have \(a_{ij}(t+T)f_{j}(u)=-a_{ij}(t)f_{j}(-u)\).
(H3) The following inequality holds:
$$\frac{\sqrt{2}}{\alpha}\bigl(a_{i}\delta_{i}^{+}+b_{i} \eta_{i}^{+}\bigr)< 1, $$
where \(\alpha=\min_{1\leq{i}\leq{n}}\{a_{i},b_{i}\}, i=1,2,\dots,n\).
Definition 2.1
The solution \((x^{*}(t),y^{*}(t))^{T}\) of system (1.4) is said to globally exponentially stable if there exist constants \(\beta>0\) and \(M>1\) such that
$$\sum_{i=1}^{n} \bigl\vert x_{i}(t)-x_{i}^{*}(t) \bigr\vert ^{2}+\sum _{i=1}^{n} \bigl\vert y_{i}(t)-y_{i}^{*}(t) \bigr\vert ^{2}\leq {M}e^{-\beta t}\bigl( \bigl\Vert \varphi- \varphi^{*} \bigr\Vert ^{2}+ \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2}\bigr) $$
for each solution \((x(t),y(t))^{T}\) of system (1.4).
Next, we present three important lemmas which are necessary for proving our main results in Sect. 3.
Lemma 2.1
Let
$$A=\left ( \begin{matrix} -a_{i} & 0 \\ 0 & -b_{i} \end{matrix} \right ),\qquad \alpha=\min_{1\leq{i}\leq{n}}\{a_{i},b_{i} \}, $$
then we have
$$\Vert \exp A t \Vert \leq\sqrt{2}e^{-\alpha t} $$
for all \(t\geq0\).
Proof
Since
$$A=\left ( \begin{matrix} -a_{i} & 0 \\ 0 & -b_{i} \end{matrix} \right ), $$
it follows that
$$\exp A t=\left ( \begin{matrix} e^{-a_{i}t} & 0 \\ 0 & e^{-b_{i}t} \end{matrix} \right ). $$
By the definition of matrix norm, we get
$$\Vert \exp A t \Vert = \bigl(e^{ -2a_{i}t}+e^{ -2b_{i}t} \bigr)^{\frac{1}{2}}\leq\sqrt {2}e^{-\alpha t}. $$
 □
Lemma 2.2
Assume that
$$\mathrm{(H4)} \textstyle\begin{cases} -2a_{i}+a_{i}^{2}\delta_{i}^{+}+\sum_{j=1}^{n}a_{i}\delta _{i}^{+}a_{ij}^{+}L_{jf}^{2\xi_{j}}+\sum_{j=1}^{n}a_{ij}^{+}L_{jf}^{2\xi_{j}}\\ \quad{}+\sum_{i=1}^{n}a_{i}^{2}\delta_{i}^{+}+\sum_{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon _{j})}+b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}< 0, \\ {-}2b_{i}+b_{i}^{2}\eta_{i}^{+}+\sum_{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}}+\sum_{j=1}^{n}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}}\\ \quad{} +\sum_{i=1}^{n}a_{i}^{2}\delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi _{j})}+a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}+b_{i}\eta_{i}^{+}< 0, \end{cases} $$
where \(0\leq\varepsilon_{i}\leq1\ (i=1,2,3,4,5,6)\) are any constants. Then there exists \(\beta>0\) such that
$$\begin{aligned} & \beta-2a_{i}+a_{i}^{2}\delta_{i}^{+}+ \sum_{j=1}^{n}a_{i}\delta _{i}^{+}a_{ij}^{+}L_{jf}^{2\xi_{j}}+ \sum_{j=1}^{n}a_{ij}^{+}L_{jf}^{2\xi _{j}} \\ & \quad{}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}e^{\beta \delta_{i}^{+}}+\sum _{j=1}^{n}b_{i}\eta_{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon _{j})}e^{\beta\tau_{ij}^{+}}+b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}e^{\beta \tau_{ij}^{+}} \leq0, \\ & \beta-2b_{i}+b_{i}^{2}\eta_{i}^{+}+ \sum_{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}}+ \sum_{j=1}^{n}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}} \\ & \quad{}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta \delta_{ij}^{+}}+a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta\delta _{ij}^{+}}+b_{i} \eta_{i}^{+}e^{\beta\eta_{i}^{+}}\leq0. \end{aligned}$$
Proof
Let
$$\begin{aligned} \varrho_{1i}(\beta)={}&\beta-2a_{i}+a_{i}^{2} \delta_{i}^{+}+\sum_{j=1}^{n}a_{i} \delta_{i}^{+}a_{ij}^{+}L_{jf}^{2\xi_{j}}+ \sum_{j=1}^{n}a_{ij}^{+}L_{jf}^{2\xi_{j}} \\ & {}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}e^{\beta \delta_{i}^{+}}+\sum _{j=1}^{n}b_{i}\eta_{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon _{j})}e^{\beta\tau_{ij}^{+}}+b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}e^{\beta \tau_{ij}^{+}}, \\ \varrho_{2i}(\beta)={}&\beta-2b_{i}+b_{i}^{2} \eta_{i}^{+}+\sum_{j=1}^{n}b_{i} \eta _{i}^{+}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}}+ \sum_{j=1}^{n}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}} \\ & {}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta \delta_{ij}^{+}}+a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta\delta _{ij}^{+}}+b_{i} \eta_{i}^{+}e^{\beta\eta_{i}^{+}}. \end{aligned}$$
Obviously, \(\varrho_{ji}(\beta)\ (j=1,2;i=1,2,\ldots,n)\) is a continuously differential function. We can easily check that
$$\textstyle\begin{cases} \frac{d\varrho_{1i}(\beta)}{d\beta}=1+\delta_{i}^{+}\sum_{i=1}^{n}a_{i}^{2}\delta_{i}^{+}e^{\beta \delta_{i}^{+}}+\tau_{ij}^{+}\sum_{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}e^{\beta\tau_{ij}^{+}}+\tau _{ij}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}e^{\beta\tau _{ij}^{+}}>0,\\ \lim_{\beta\rightarrow{+\infty}}\varrho_{1i}(\beta)=+\infty,\qquad \varrho _{1i}(0)< 0,\\ \frac{d\varrho_{2i}(\beta)}{d\beta}=1+\delta_{ij}^{+}\sum_{i=1}^{n}a_{i}^{2}\delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta \delta_{ij}^{+}}+\delta_{ij}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta \delta_{ij}^{+}}+\eta_{i}^{+}b_{i}\eta_{i}^{+}e^{\beta\eta_{i}^{+}}>0,\\ \lim_{\beta\rightarrow{+\infty}}\varrho_{2i}(\beta)=+\infty,\qquad \varrho_{2i}(0)< 0. \end{cases} $$
By using the intermediate value theorem, we have that there exist constants \(\beta_{i}^{*}>0\ (i=1,2)\) such that
$$\varrho_{j}\bigl(\beta_{i}^{*}\bigr)=0,\quad j=1,2. $$
Let \(\beta_{0}=\min\{\beta_{1}^{*},\beta_{2}^{*}\}\), then it follows that \(\beta_{0}>0\) and
$$\varrho_{j}(\beta_{0})\leq0,\quad j=1,2. $$
This completes the proof of Lemma 2.2. □
Lemma 2.3
Assume that (H1), (H3), and (H4) are satisfied. Then, for any solution \((x_{1}(t),x_{2}(t),\ldots,x_{n}(t), y_{1},y_{2},\ldots, y_{n})^{T}\) of system (1.4), there exists a constant
$$\begin{aligned} \sigma^{*}={}& \biggl[1-\frac{\sqrt{2}}{\alpha}\bigl(a_{i} \delta_{i}^{+}+b_{i}\eta _{i}^{+} \bigr) \biggr]^{-1} \bigl[a_{i}\delta_{i}^{+} \bigl(a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \bigr) \\ & {}+a_{ij}^{+}M_{j}^{f}+I_{i}^{+}+b_{i} \eta_{i}^{+} \bigl(b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr)+b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr] \end{aligned}$$
such that
$$\bigl\vert x_{i}(t) \bigr\vert \leq{\sigma^{*}},\qquad \bigl\vert y_{i}(t) \bigr\vert \leq{\sigma^{*}},\quad i=1,2,\ldots,n, $$
for all \(t>0\).
Proof
From (1.4), we have
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}(t)}{dt}=-a_{i}x_{i}(t)+a_{i}[x_{i}(t)-x_{i}(t-\delta_{i}(t))]+\sum_{j=1}^{n}a_{ij}(t)f_{j}(y_{j}(t-\sigma_{ij}(t)))+I_{i}(t),\\ \frac{dy_{i}(t)}{dt}=-b_{i}y_{i}(t)+b_{i}[y_{i}(t)-y_{i}(t-\eta_{i}(t))]+\sum_{j=1}^{n}b_{ij}(t)g_{j}(x_{j}(t-\tau_{ij}(t)))+J_{i}(t). \end{cases}\displaystyle \end{aligned}$$
(2.2)
Then we have
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}(t)}{dt}=-a_{i}x_{i}(t)+a_{i}\int_{t-\delta _{i}(t)}^{t}x_{i}^{\prime}(s)\,ds+\sum_{j=1}^{n}a_{ij}(t)f_{j}(y_{j}(t-\sigma _{ij}(t)))+I_{i}(t),\\ \frac{dy_{i}(t)}{dt}=-b_{i}y_{i}(t)+b_{i}\int_{t-\eta_{i}(t)}^{t}y_{i}^{\prime}(s)\,ds+\sum_{j=1}^{n}b_{ij}(t)g_{j}(x_{j}(t-\tau_{ij}(t)))+J_{i}(t). \end{cases}\displaystyle \end{aligned}$$
(2.3)
Thus
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}(t)}{dt}=-a_{i}x_{i}(t)+a_{i}\int_{t-\delta_{i}(t)}^{t} [-a_{i}x_{i}(s-\delta_{i}(s))\\ \phantom{\frac{dx_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}a_{ij}(s)f_{j}(y_{j}(s-\sigma _{ij}(s)))+I_{i}(s) ]\,ds\\ \phantom{\frac{dx_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}a_{ij}(t)f_{j}(y_{j}(t-\sigma_{ij}(t)))+I_{i}(t),\\ \frac{dy_{i}(t)}{dt}=-b_{i}y_{i}(t)+b_{i}\int_{t-\eta_{i}(t)}^{t} [-b_{i}y_{i}(s-\eta_{i}(s))\\ \phantom{\frac{dy_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}b_{ij}(s)g_{j}(x_{j}(s-\tau _{ij}(s)))+J_{i}(s) ]\,ds\\ \phantom{\frac{dx_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}b_{ij}(t)g_{j}(x_{j}(t-\tau_{ij}(t)))+J_{i}(t). \end{cases}\displaystyle \end{aligned}$$
(2.4)
Let
$$\begin{aligned} &z_{ii}(t)=\left ( \begin{matrix} x_{i}(t) \\ y_{i}(t) \end{matrix} \right ),\qquad A=\left ( \begin{matrix} -a_{i} & 0 \\ 0 & -b_{i} \end{matrix} \right ),\\ & f \bigl(x_{i}(t),y_{i}(t)\bigr)=\left ( \begin{matrix} f_{1}(x_{i}(t),y_{i}(t) \\ f_{2}(x_{i}(t),y_{i}(t) \end{matrix} \right),\qquad I_{ii}(t)= \left( \begin{matrix} I_{i}(t) \\ J_{i}(t) \end{matrix} \right), \end{aligned}$$
where
$$\begin{aligned} f_{1}(x_{i}(t),y_{i}(t)={}&a_{i} \int_{t-\delta_{i}(t)}^{t} \Biggl[-a_{i}x_{i} \bigl(s-\delta _{i}(s)\bigr)+\sum_{j=1}^{n}a_{ij}(s)f_{j} \bigl(y_{j}\bigl(s-\sigma_{ij}(s)\bigr)\bigr)+I_{i}(s) \Biggr]\,ds \\ & {}+\sum_{j=1}^{n}a_{ij}(t)f_{j} \bigl(y_{j}\bigl(t-\sigma_{ij}(t)\bigr)\bigr), \\ f_{2}(x_{i}(t),y_{i}(t)={}& b_{i} \int_{t-\eta_{i}(t)}^{t} \Biggl[-b_{i}y_{i} \bigl(s-\eta _{i}(s)\bigr)+\sum_{j=1}^{n}b_{ij}(s)g_{j} \bigl(x_{j}\bigl(s-\tau_{ij}(s)\bigr)\bigr)+J_{i}(s) \Biggr]\,ds \\ & {}+\sum_{j=1}^{n}b_{ij}(t)g_{j} \bigl(x_{j}\bigl(t-\tau_{ij}(t)\bigr)\bigr), \end{aligned}$$
then system (1.4) can be written in the following equivalent form:
$$\begin{aligned} z_{ii}^{\prime}(t)\leq{A}z_{ii}(t)+f \bigl(x_{i}(t),y_{i}(t)\bigr)+I_{ii}(t). \end{aligned}$$
(2.5)
Solving inequality (2.5), we have
$$z_{ii}(t)\leq{e^{At}}z_{ii}(0)+ \int_{0}^{t}e^{A(t-s)}\bigl[f \bigl(x_{i}(s),y_{i}(s)\bigr)+I_{ii}(t)\bigr]\,ds. $$
It follows from Lemma 2.1 that
$$\begin{aligned} \bigl\Vert z_{ii}(t) \bigr\Vert \leq {}&\sqrt{2}e^{-\alpha t} \bigl\Vert z_{ii}(0) \bigr\Vert +\sqrt{2} \int_{0}^{t}e^{\alpha (t-s)}\bigl[ \bigl\Vert f \bigl(x_{i}(s),y_{i}(s)\bigr) \bigr\Vert + \bigl\vert I_{ii}(s) \bigr\vert \bigr]\,ds \\ \leq{}& \sqrt{2} \Vert \varphi \Vert ^{2}+\frac{\sqrt{2}}{\alpha} \bigl(1-e^{-\alpha t} \bigr) \\ &{} \times \bigl[a_{i}\delta_{i}^{+} \bigl( \bigl\vert x_{i}\bigl(t-\delta _{i}(t)\bigr) \bigr\vert +a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \bigr)+a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \\ &{} +b_{i}\eta_{i}^{+} \bigl( \bigl\vert y_{i}\bigl(t-\eta _{i}(t)\bigr) \bigr\vert +b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr)+b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr] \\ \leq {}&\sqrt{2} \Vert \varphi \Vert ^{2}+\frac{\sqrt{2}}{\alpha} \bigl(1-e^{-\alpha t} \bigr) \\ &{} \times \bigl[a_{i}\delta_{i}^{+} \bigl( \bigl\Vert z_{ii}(t) \bigr\Vert +a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \bigr)+a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \\ &{} + b_{i}\eta_{i}^{+} \bigl(\Vert z_{ii}(t) \Vert +b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr)+b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr] \\ \leq{}& \sqrt{2} \Vert \varphi \Vert ^{2}+\frac{\sqrt{2}}{\alpha} \\ &{} \times \bigl[a_{i}\delta_{i}^{+} \bigl( \bigl\Vert z_{ii}(t) \bigr\Vert +a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \bigr)+a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \\ &{} + b_{i}\eta_{i}^{+} \bigl( \bigl\Vert z_{ii}(t) \bigr\Vert +b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr)+b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr]. \end{aligned}$$
(2.6)
Then
$$\begin{aligned} \bigl\Vert z_{ii}(t) \bigr\Vert \leq{}& \biggl[1- \frac{\sqrt{2}}{\alpha}\bigl(a_{i}\delta _{i}^{+}+b_{i} \eta_{i}^{+}\bigr) \biggr]^{-1} \bigl[a_{i}\delta_{i}^{+} \bigl(a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \bigr) \\ & {}+a_{ij}^{+}M_{j}^{f}+I_{i}^{+}+b_{i} \eta_{i}^{+} \bigl(b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr)+b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr]. \end{aligned}$$
Let
$$\begin{aligned} \sigma^{*}={}& \biggl[1-\frac{\sqrt{2}}{\alpha}\bigl(a_{i} \delta_{i}^{+}+b_{i}\eta _{i}^{+} \bigr) \biggr]^{-1} \bigl[a_{i}\delta_{i}^{+} \bigl(a_{ij}^{+}M_{j}^{f}+I_{i}^{+} \bigr) \\ & {}+a_{ij}^{+}M_{j}^{f}+I_{i}^{+}+b_{i} \eta_{i}^{+} \bigl(b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr)+b_{ij}^{+}M_{j}^{g}+J_{i}^{+} \bigr]. \end{aligned}$$
Then it follows that \(\vert x_{i}(t) \vert \leq\sigma^{*}, \vert y_{i}(t) \vert \leq\sigma^{*}, i=1,2,\ldots,n\), for all \(t>0\). This completes the proof of Lemma 2.3. □

3 Main results

In this section, we present our main result that there exists an exponentially stable anti-periodic solution of (1.4).
Theorem 3.1
Assume that (H1)–(H4) hold true. Then any solution \((x^{*}(t),y^{*}(t))^{T}\) of system (1.4) is globally exponentially stable.
Proof
Let \(u_{i}(t)=x_{i}(t)-x_{i}^{*}(t), v_{i}(t)=y_{i}(t)-y_{i}^{*}(t), i=1,2,\ldots,n\). It follows from system (2.4) that
$$\begin{aligned} \textstyle\begin{cases} \frac{du_{i}(t)}{dt}=-a_{i}u_{i}(t)+a_{i}\int_{t-\delta_{i}(t)}^{t} [-a_{i}u_{i}(s-\delta_{i}(s))\\ \phantom{\frac{du_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}a_{ij}(s)(f_{j}(y_{j}(s-\sigma_{ij}(s)))-f_{j}(y_{j}^{*}(s-\sigma _{ij}(s)))) ]\,ds\\ \phantom{\frac{du_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}a_{ij}(t)(f_{j}(y_{j}(t-\sigma_{ij}(t)))-f_{j}(y_{j}^{*}(t-\sigma _{ij}(t)))),\\ \frac{dv_{i}(t)}{dt}=-b_{i}v_{i}(t)+b_{i}\int_{t-\eta_{i}(t)}^{t} [-b_{i}v_{i}(s-\eta_{i}(s))\\ \phantom{\frac{dv_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}b_{ij}(s)(g_{j}(x_{j}(s-\tau_{ij}(s)))-g_{j}(x_{j}^{*}(s-\tau _{ij}(s)))) ]\,ds\\ \phantom{\frac{dv_{i}(t)}{dt}=}{}+\sum_{j=1}^{n}b_{ij}(t)(g_{j}(x_{j}(t-\tau_{ij}(t)))-g_{j}(x_{j}(t-\tau_{ij}(t)))), \end{cases}\displaystyle \end{aligned}$$
(3.1)
which leads to
$$\begin{aligned} \textstyle\begin{cases} \frac{1}{2}\frac{du_{i}^{2}(t)}{dt}=-a_{i}u_{i}^{2}(t)+a_{i}u_{i}(t)\int_{t-\delta _{i}(t)}^{t} [-a_{i}u_{i}(s-\delta_{i}(s))\\ \phantom{\frac{1}{2}\frac{du_{i}^{2}(t)}{dt}=}{}+\sum_{j=1}^{n}a_{ij}(s)(f_{j}(y_{j}(s-\sigma_{ij}(s)))-f_{j}(y_{j}^{*}(s-\sigma _{ij}(s)))) ]\,ds\\ \phantom{\frac{1}{2}\frac{du_{i}^{2}(t)}{dt}=}{}+u_{i}(t)\sum_{j=1}^{n}a_{ij}(t)(f_{j}(y_{j}(t-\sigma _{ij}(t)))-f_{j}(y_{j}^{*}(t-\sigma_{ij}(t)))),\\ \frac{1}{2}\frac{dv_{i}^{2}(t)}{dt}=-b_{i}v_{i}^{2}(t)+b_{i}v_{i}(t)\int_{t-\eta _{i}(t)}^{t} [-b_{i}v_{i}(s-\eta_{i}(s))\\ \phantom{\frac{1}{2}\frac{dv_{i}^{2}(t)}{dt}=}{}+\sum_{j=1}^{n}b_{ij}(s)(g_{j}(x_{j}(s-\tau_{ij}(s)))-g_{j}(x_{j}^{*}(s-\tau _{ij}(s)))) ]\,ds\\ \phantom{\frac{1}{2}\frac{dv_{i}^{2}(t)}{dt}=}{}+v_{i}(t)\sum_{j=1}^{n}b_{ij}(t)(g_{j}(x_{j}(t-\tau_{ij}(t)))-g_{j}(x_{j}(t-\tau_{ij}(t)))). \end{cases}\displaystyle \end{aligned}$$
(3.2)
In view of condition (H1), we get
$$\begin{aligned} \textstyle\begin{cases} \frac{du_{i}^{2}(t)}{dt}\leq-2a_{i}u_{i}^{2}(t)+a_{i}u_{i}(t)\int_{t-\delta _{i}(t)}^{t} [-a_{i}u_{i}(s-\delta_{i}(s))\\ \phantom{\frac{du_{i}^{2}(t)}{dt}\leq}{}+\sum_{j=1}^{n}a_{ij}(s)(f_{j}(y_{j}(s-\sigma_{ij}(s)))-f_{j}(y_{j}^{*}(s-\sigma _{ij}(s)))) ]\,ds\\ \phantom{\frac{du_{i}^{2}(t)}{dt}\leq}{}+u_{i}(t)\sum_{j=1}^{n}a_{ij}(t)(f_{j}(y_{j}(t-\sigma _{ij}(t)))-f_{j}(y_{j}^{*}(t-\sigma_{ij}(t)))),\\ \frac{dv_{i}^{2}(t)}{dt}\leq-2b_{i}v_{i}^{2}(t)+b_{i}v_{i}(t)\int_{t-\eta_{i}(t)}^{t} [-b_{i}v_{i}(s-\eta_{i}(s))\\ \phantom{\frac{dv_{i}^{2}(t)}{dt}\leq}{}+\sum_{j=1}^{n}b_{ij}(s)(g_{j}(x_{j}(s-\tau_{ij}(s)))-g_{j}(x_{j}^{*}(s-\tau _{ij}(s)))) ]\,ds\\ \phantom{\frac{dv_{i}^{2}(t)}{dt}\leq}{}+v_{i}(t)\sum_{j=1}^{n}b_{ij}(t)(g_{j}(x_{j}(t-\tau_{ij}(t)))-g_{j}(x_{j}(t-\tau_{ij}(t)))). \end{cases}\displaystyle \end{aligned}$$
(3.3)
Then
$$\begin{aligned} \textstyle\begin{cases} \frac{du_{i}^{2}(t)}{dt}\leq-2a_{i}u_{i}^{2}(t)+a_{i}\delta_{i}^{+} [a_{i}(u_{i}^{2}+u_{i}^{2}(t-\delta_{i}(t)))\\ \phantom{\frac{du_{i}^{2}(t)}{dt}\leq}{}+\sum_{j=1}^{n}a_{ij}^{+}(L_{jf}^{2\xi_{j}}u_{i}^{2}(t)+L_{jf}^{2(1-\xi _{j})}v_{j}^{2}(t-\delta_{ij}(t))) ]\\ \phantom{\frac{du_{i}^{2}(t)}{dt}\leq}{}+\sum_{j=1}^{n}a_{ij}^{+}(L_{jf}^{2\xi_{j}}u_{i}^{2}(t)+L_{jf}^{2(1-\xi _{j})}v_{j}^{2}(t-\delta_{ij}(t))),\\ \frac{dv_{i}^{2}(t)}{dt}\leq-2b_{i}v_{i}^{2}(t)+b_{i}\eta_{i}^{+} [b_{i}(v_{i}^{2}+v_{i}^{2}(t-\eta_{i}(t)))\\ \phantom{\frac{dv_{i}^{2}(t)}{dt}\leq}{}+\sum_{j=1}^{n}b_{ij}^{+}(L_{jg}^{2\varepsilon _{j}}v_{i}^{2}(t)+L_{jg}^{2(1-\varepsilon_{j})}u_{j}^{2}(t-\tau_{ij}(t))) ]\\ \phantom{\frac{dv_{i}^{2}(t)}{dt}\leq}{}+\sum_{j=1}^{n}b_{ij}^{+}(L_{jg}^{\varepsilon _{j}}v_{i}^{2}(t)+L_{jg}^{2(1-\varepsilon_{j})}u_{j}^{2}(t-\tau_{ij}(t))), \end{cases}\displaystyle \end{aligned}$$
(3.4)
where \(0\leq\xi_{j},\varepsilon_{j}\leq1,j=1,2,\ldots,n\).
Now we consider the following Lyapunov function:
$$\begin{aligned} V(t)={}&e^{\beta t}\sum_{i=1}^{n}u_{i}^{2}(t)+e^{\beta t} \sum_{i=1}^{n}v_{i}^{2}(t) \\ &{}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+} \int_{t-\delta_{i}(t)}^{t}e^{\beta(s+\delta _{i}(t))}u_{i}^{2}(s)\,ds \\ & {}+\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}\delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi _{j})} \int_{t-\delta_{ij}(t)}^{t}e^{\beta(s+\delta_{ij}(t))}v_{j}^{2}(s)\,ds \\ & {}+\sum_{i=1}^{n}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \int_{t-\delta _{ij}(t)}^{t}e^{\beta(s+\delta_{ij}(t))}v_{j}^{2}(s)\,ds \\ & {}+\sum_{i=1}^{n}b_{i}^{2} \eta_{i}^{+} \int_{t-\eta_{i}(t)}^{t}e^{\beta(s+\eta _{i}(t))}v_{i}^{2}(s)\,ds \\ & {}+\sum_{i=1}^{n}\sum _{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \int_{t-\tau _{ij}(t)}^{t}e^{\beta(s+\tau_{ij}(t))}u_{j}^{2}(s)\,ds \\ & {}+\sum_{i=1}^{n}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \int_{t-\tau _{ij}(t)}^{t}e^{\beta(s+\tau_{ij}(t))}u_{j}^{2}(s)\,ds, \end{aligned}$$
(3.5)
where β is given by Lemma 2.2. Differentiating \(V(t)\) along solutions to system (1.4), together with (3.3), we have
$$\begin{aligned} \frac{dV(t)}{dt}\leq{}&\beta{e^{\beta t}} \Biggl[\sum _{i=1}^{n}u_{i}^{2}(t)+\sum _{i=1}^{n}v_{i}^{2}(t) \Biggr] \\ & {}+e^{\beta t}\sum_{j=1}^{n} \Biggl\{ -2a_{i}u_{i}^{2}(t)+a_{i} \delta_{i}^{+} \Biggl[a_{i}\bigl(u_{i}^{2}+u_{i}^{2} \bigl(t-\delta_{i}(t)\bigr)\bigr) \\ & {}+\sum_{j=1}^{n}a_{ij}^{+} \bigl(L_{jf}^{2\xi_{j}}u_{i}^{2}(t)+L_{jf}^{2(1-\xi _{j})}v_{j}^{2} \bigl(t-\delta_{ij}(t)\bigr)\bigr) \Biggr] \\ & {}+\sum_{j=1}^{n}a_{ij}^{+} \bigl(L_{jf}^{2\xi_{j}}u_{i}^{2}(t)+L_{jf}^{2(1-\xi _{j})}v_{j}^{2} \bigl(t-\delta_{ij}(t)\bigr)\bigr) \Biggr\} \\ & {}+e^{\beta t}\sum_{j=1}^{n} \Biggl\{ -2b_{i}v_{i}^{2}(t)+b_{i} \eta_{i}^{+} \Biggl[b_{i}\bigl(v_{i}^{2}+v_{i}^{2} \bigl(t-\eta_{i}(t)\bigr)\bigr) \\ & {}+\sum_{j=1}^{n}b_{ij}^{+} \bigl(L_{jg}^{2\varepsilon _{j}}v_{i}^{2}(t)+L_{jg}^{2(1-\varepsilon_{j})}u_{j}^{2} \bigl(t-\tau_{ij}(t)\bigr)\bigr) \Biggr] \\ &{} +\sum_{j=1}^{n}b_{ij}^{+} \bigl(L_{jg}^{\varepsilon _{j}}v_{i}^{2}(t)+L_{jg}^{2(1-\varepsilon_{j})}u_{j}^{2} \bigl(t-\tau_{ij}(t)\bigr)\bigr) \Biggr\} \\ & {}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}\bigl[e^{\beta(t+\delta_{i}(t))} u_{i}^{2}(t)-e^{\beta t}u_{i}^{2} \bigl(t-\delta_{i}(t)\bigr)\bigr] \\ & {}+\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}\delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi _{j})} \bigl[e^{\beta(t+\delta_{ij}(t))}v_{j}^{2}(t)-e^{\beta t}v_{j}^{2} \bigl(t-\delta _{ij}(t)\bigr)\bigr] \\ & {}+\sum_{i=1}^{n}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \bigl[e^{\beta(t+\delta _{ij}(t))}v_{j}^{2}(t)-e^{\beta(t)}v_{j}^{2} \bigl(t-\delta_{ij}(t)\bigr)\bigr] \\ & {}+\sum_{i=1}^{n}b_{i}^{2} \eta_{i}^{+}\bigl[e^{\beta(t+\eta_{i}(t))}v_{i}^{2}(t)-e^{\beta t}v_{i}^{2} \bigl(t-\eta_{i}(t)\bigr)\bigr] \\ & {}+\sum_{i=1}^{n}\sum _{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \bigl[e^{\beta(t+\tau _{ij}(t))}u_{j}^{2}(t)-e^{\beta t}u_{j}^{2} \bigl(t-\tau_{ij}(t)\bigr)\bigr] \\ & {}+\sum_{i=1}^{n}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \bigl[e^{\beta(t+\tau _{ij}(t))}u_{j}^{2}(t)-e^{\beta t}u_{j}^{2} \bigl(t-\tau_{ij}(t)\bigr)\bigr] \\ ={}&e^{\beta t} \Biggl[\beta-2a_{i}+a_{i}^{2} \delta_{i}^{+}+\sum_{j=1}^{n}a_{i} \delta _{i}^{+}a_{ij}^{+}L_{jf}^{2\xi_{j}}+ \sum_{j=1}^{n}a_{ij}^{+}L_{jf}^{2\xi _{j}}+ \sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}e^{\beta\delta_{i}(t)} \\ & {}+\sum_{j=1}^{n}b_{i} \eta_{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon _{j})}e^{\beta\tau_{ij}(t)}+b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}e^{\beta \tau_{ij}(t)} \Biggr]x_{i}^{2}(t) \\ & {}+e^{\beta t} \Biggl[\beta-2b_{i}+b_{i}^{2} \eta_{i}^{+}+\sum_{j=1}^{n}b_{i} \eta _{i}^{+}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}}+ \sum_{j=1}^{n}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}} \\ & {}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta \delta_{ij}(t)}+a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta\delta _{ij}(t)}+b_{i} \eta_{i}^{+}e^{\beta\eta_{i}(t)} \Biggr]y_{i}^{2}(t) \\ \leq{}&e^{\beta t} \Biggl[\beta-2a_{i}+a_{i}^{2} \delta_{i}^{+}+\sum_{j=1}^{n}a_{i} \delta _{i}^{+}a_{ij}^{+}L_{jf}^{2\xi_{j}}+ \sum_{j=1}^{n}a_{ij}^{+}L_{jf}^{2\xi _{j}}+ \sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}e^{\beta\delta_{i}^{+}} \\ & {}+\sum_{j=1}^{n}b_{i} \eta_{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon _{j})}e^{\beta\tau_{ij}^{+}}+b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})}e^{\beta \tau_{ij}^{+}} \Biggr]x_{i}^{2}(t) \\ & {}+e^{\beta t} \Biggl[\beta-2b_{i}+b_{i}^{2} \eta_{i}^{+}+\sum_{j=1}^{n}b_{i} \eta _{i}^{+}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}}+ \sum_{j=1}^{n}b_{ij}^{+}L_{jg}^{2\varepsilon_{j}} \\ & {}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta \delta_{ij}^{+}}+a_{ij}^{+}L_{jf}^{2(1-\xi_{j})}e^{\beta\delta _{ij}^{+}}+b_{i} \eta_{i}^{+}e^{\beta\eta_{i}^{+}} \Biggr]y_{i}^{2}(t). \end{aligned}$$
(3.6)
It follows from Lemma 2.2 that \(\frac{dV(t)}{dt}\leq0\), which implies that \(V(t)\leq{V(0)}\) for all \(t>0\). Thus
$$\begin{aligned} & e^{\beta t} \Biggl[\sum_{i=1}^{n}u_{i}^{2}(t)+ \sum_{i=1}^{n}v_{i}^{2}(t) \Biggr] \\ &\quad \leq\sum_{i=1}^{n}u_{i}^{2}(0)+ \sum_{i=1}^{n}v_{i}^{2}(0) \\ & \qquad{}+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+} \int_{-\delta_{i}(0)}^{0}e^{\beta(s+\delta _{i}(0))}u_{i}^{2}(s)\,ds \\ & \qquad{}+\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}\delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi _{j})} \int_{-\delta_{ij}(0)}^{0}e^{\beta(s+\delta_{ij}(0))}v_{j}^{2}(s)\,ds \\ & \qquad{}+\sum_{i=1}^{n}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \int_{-\delta _{ij}(0)}^{0}e^{\beta(s+\delta_{ij}(0))}v_{j}^{2}(s)\,ds \\ & \qquad{}+\sum_{i=1}^{n}b_{i}^{2} \eta_{i}^{+} \int_{-\eta_{i}(0)}^{0}e^{\beta(s+\eta _{i}(0))}v_{i}^{2}(s)\,ds \\ & \qquad{}+\sum_{i=1}^{n}\sum _{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \int_{-\tau _{ij}(0)}^{0}e^{\beta(s+\tau_{ij}(0))}u_{j}^{2}(s)\,ds \\ & \qquad{}+\sum_{i=1}^{n}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \int_{-\tau _{ij}(0)}^{t}e^{\beta(s+\tau_{ij}(0))}u_{j}^{2}(s)\,ds \\ &\quad \leq \bigl\Vert \varphi-\varphi^{*} \bigr\Vert ^{2}+ \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2}+\sum_{i=1}^{n}a_{i}^{2} \delta _{i}^{+}\frac{1}{\beta}e^{\beta\delta_{i}^{+}} \bigl\Vert \varphi-\varphi ^{*} \bigr\Vert ^{2} \\ & \qquad{}+\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}\delta_{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi _{j})} \frac{1}{\beta}e^{\beta\delta_{ij}^{+}} \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2} \\ & \qquad{}+\sum_{i=1}^{n}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \frac{1}{\beta}e^{\beta \delta_{ij}^{+}} \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2} \\ & \qquad{}+\sum_{i=1}^{n}b_{i}^{2} \eta_{i}^{+}\frac{1}{\beta}e^{\beta\eta _{i}^{+}} \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2} \\ & \qquad{}+\sum_{i=1}^{n}\sum _{j=1}^{n}b_{i}\eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \frac{1}{\beta}e^{\beta\tau _{ij}^{+}} \bigl\Vert \varphi-\varphi^{*} \bigr\Vert ^{2} \\ & \qquad{}+\sum_{i=1}^{n}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \frac{1}{\beta }e^{\beta\tau_{ij}^{+}} \bigl\Vert \varphi-\varphi^{*} \bigr\Vert ^{2} \\ &\quad= \Biggl[1+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}\frac{1}{\beta}e^{\beta\delta _{i}^{+}}+\sum _{i=1}^{n}\sum_{j=1}^{n}b_{i} \eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \frac{1}{\beta}e^{\beta\tau _{ij}^{+}} \\ & \qquad{} +\sum_{i=1}^{n}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \frac {1}{\beta}e^{\beta\tau_{ij}^{+}} \Biggr] \bigl\Vert \varphi-\varphi^{*} \bigr\Vert ^{2} \\ & \qquad{}+ \Biggl[1+\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}\delta _{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \frac{1}{\beta}e^{\beta\delta _{ij}^{+}} \\ & \qquad{}+\sum_{i=1}^{n}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \frac{1}{\beta}e^{\beta \delta_{ij}^{+}}+\sum_{i=1}^{n}b_{i}^{2} \eta_{i}^{+}\frac{1}{\beta }e^{\beta\eta_{i}^{+}} \Biggr] \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2}. \end{aligned}$$
(3.7)
Let
$$\begin{aligned} &\theta_{1}=1+\sum_{i=1}^{n}a_{i}^{2} \delta_{i}^{+}\frac{1}{\beta}e^{\beta\delta _{i}^{+}}+\sum _{i=1}^{n}\sum_{j=1}^{n}b_{i} \eta _{i}^{+}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \frac{1}{\beta}e^{\beta\tau_{ij}^{+}} +\sum_{i=1}^{n}b_{ij}^{+}L_{jg}^{2(1-\varepsilon_{j})} \frac{1}{\beta }e^{\beta\tau_{ij}^{+}}, \\ &\theta_{2}=1+\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}\delta _{i}^{+}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \frac{1}{\beta}e^{\beta\delta _{ij}^{+}}+\sum_{i=1}^{n}a_{ij}^{+}L_{jf}^{2(1-\xi_{j})} \frac{1}{\beta }e^{\beta\delta_{ij}^{+}} \sum_{i=1}^{n}b_{i}^{2} \eta_{i}^{+}\frac{1}{\beta}e^{\beta\eta_{i}^{+}} \end{aligned}$$
and choose
$$M=\max\{\theta_{1},\theta_{2}\}>1. $$
Then Eq. (3.7) can be rewritten as
$$\sum_{i=1}^{n}u_{i}^{2}(t)+ \sum_{i=1}^{n}v_{i}^{2}(t) \leq{M}e^{-\beta t} \bigl[ \bigl\Vert \varphi-\varphi^{*} \bigr\Vert ^{2}+ \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2} \bigr] $$
for all \(t>0\). Then
$$\sum_{i=1}^{n} \bigl\vert x_{i}(t)-x_{i}^{*}(t) \bigr\vert ^{2}+\sum _{i=1}^{n} \bigl\vert y_{i}(t)-y_{i}^{*}(t) \bigr\vert ^{2}\leq {M}e^{-\beta t} \bigl[ \bigl\Vert \varphi- \varphi^{*} \bigr\Vert ^{2}+ \bigl\Vert \psi-\psi^{*} \bigr\Vert ^{2} \bigr] $$
for all \(t>0\). Thus the solution \((x(t),y(t))^{T}\) of system (1.4) is globally exponentially stable. □
Theorem 3.2
Assume that (H1)–(H4) are satisfied. Then system (1.4) has exactly one T-anti-periodic solution which is globally stable.
Proof
It follows from system (1.4) and (H2) that for each \(k\in{N}\), we have
$$\begin{aligned} & \frac{d}{dt} \bigl[(-1)^{k+1}x_{i}\bigl(t+(k+1)T \bigr) \bigr] \\ & \quad=(-1)^{k+1} [-a_{i}x_{i}\bigl(t+(k+1)T- \delta_{i}\bigl(t+(k+1)T\bigr)\bigr) \\ & \qquad{}+\sum_{j=1}^{n}a_{ij} \bigl(t+(k+1)T\bigr)f_{j}\bigl(y_{j}\bigl(t+(k+1)T-\sigma _{ij}\bigl(t+(k+1)T\bigr)\bigr)\bigr) \\ & \qquad{}+I_{i}\bigl(t+(k+1)T\bigr) \\ & \quad=-a_{i}(-1)^{k+1}x_{i}\bigl(t+(k+1)T- \delta_{i}(t)\bigr) \\ & \qquad{}+\sum_{j=1}^{n}a_{ij}(t)f_{j} \bigl((-1)^{k+1}y_{j}\bigl(t+(k+1)T-\sigma _{ij}(t) \bigr)\bigr)+I_{i}(t), \end{aligned}$$
(3.8)
$$\begin{aligned} & \frac{d}{dt} \bigl[(-1)^{k+1}y_{i} \bigl(t+(k+1)T\bigr) \bigr] \\ & \quad=(-1)^{k+1} \Biggl[-b_{i}y_{i}\bigl(t+(k+1)T- \eta_{i}\bigl(t+(k+1)T\bigr)\bigr) \\ & \qquad{}+\sum_{j=1}^{n}b_{ij} \bigl(t+(k+1)T\bigr)g_{j}\bigl(x_{j}\bigl(t+(k+1)T-\tau _{ij}\bigl(t+(k+1)T\bigr)\bigr)\bigr) \\ & \qquad{}+J_{i}\bigl(t+(k+1)T\bigr) \Biggr] \\ & \quad=-b_{i}(-1)^{k+1}y_{i}\bigl(t+(k+1)T- \eta_{i}(t)\bigr) \\ & \qquad{}+\sum_{j=1}^{n}b_{ij}(t)g_{j} \bigl((-1)^{k+1}x_{j}\bigl(t+(k+1)T-\tau _{ij}(t) \bigr)\bigr)+J_{i}(t). \end{aligned}$$
(3.9)
Let
$$\begin{aligned} &\bar{x}(t)=\bigl((-1)^{k+1}x_{1}\bigl(t+(k+1)T \bigr),(-1)^{k+1}x_{2}\bigl(t+(k+1)T\bigr),\ldots ,(-1)^{k+1}x_{n}\bigl(t+(k+1)T\bigr)\bigr)^{T}, \\ &\bar{y}(t)=\bigl((-1)^{k+1}y_{1}\bigl(t+(k+1)T \bigr),(-1)^{k+1}y_{2}\bigl(t+(k+1)T\bigr),\ldots ,(-1)^{k+1}y_{n}\bigl(t+(k+1)T\bigr)\bigr)^{T}. \end{aligned}$$
Obviously, for any \(k\in{N},(\bar{x}(t), \bar{y}(t))\) is also a solution of system (1.4). If the initial function \(\varphi_{i}(s), \psi_{i}(s)\ (i=1,2,\ldots,n)\) is bounded, it follows from Theorem 3.1 that there exists a constant \(\gamma>1\) such that
$$\begin{aligned} & \bigl\vert (-1)^{k+1}x_{i}\bigl(t+(k+1)T \bigr)-(-1)^{k}x_{i}(t+kT) \bigr\vert \\ & \quad \leq{M}e^{-\beta(t+kT)}\sup_{-\tau\leq{s}\leq0}\sum _{i=1}^{4} \bigl\vert x_{i}(t+T)+x_{i}(s) \bigr\vert ^{2} \\ & \quad \leq\gamma e^{-\beta(t+kT)}, \end{aligned}$$
(3.10)
where \(t+kT>0,i=1,2,\ldots,n\). Since for any \(k\in{N}\) we have
$$\begin{aligned} (-1)^{k+1} x_{i} \bigl(t + (k+1)T\bigr) = x_{i} (t ) +\sum_{j=0}^{k}\bigl[(-1)^{j+1} x _{i}\bigl(t + (j+1)T\bigr)-(-1)^{j} x_{i} (t + jT)\bigr], \end{aligned}$$
(3.11)
then
$$\begin{aligned} (-1)^{k+1} x_{i} \bigl(t + (k+1)T\bigr) \leq \bigl\vert x_{i} (t ) \bigr\vert +\sum_{j=0}^{k} \bigl\vert (-1)^{j+1} x _{i}\bigl(t + (j+1)T \bigr)-(-1)^{j} x_{i} (t + jT) \bigr\vert . \end{aligned}$$
(3.12)
By Lemma 2.3, we know that the solutions of system (1.4) are bounded. In view of (3.10) and (3.12), we can easily know that \(\{(-1)^{k+1} x_{i}(t + (k+1)T)\}\) uniformly converges to a continuous function \(x^{*}(t)=(x^{*}_{1}(t),x^{*}_{2}(t), \ldots, x^{*}_{n}(t))^{T}\) on any compact set of \({R^{n}}\). In a similar way, we can easily prove that \(\{(-1)^{k+1} y_{i}(t + (k+1)T)\}\) uniformly converges to a continuous function \(y^{*}(t)=(y^{*}_{1}(t),y^{*}_{2}(t), \ldots, y^{*}_{n}(t))^{T}\) on any compact set of \({R^{n}}\).
Now we show that \(x^{*}(t)\) is a T-anti-periodic solution of (1.4). Firstly, \(x^{*}(t)\) is T-anti-periodic since
$$\begin{aligned} x^{*}(t+T) &=\lim_{k\to\infty}(-1)^{k }x(t +T+ kT) \\ &=-\lim_{(k+1)\to\infty}(-1)^{k+1 } x\bigl(t +(k +1)T \bigr)=-x^{*}(t ). \end{aligned}$$
(3.13)
Then we can conclude that \(x_{i}^{*}(t)\) is T-anti-periodic on R. Similarly, \(y_{i}^{*}(t)\) is also T-anti-periodic on R. Thus we can conclude that \((x^{*}(t),y^{*}(t))^{T}\) is the solution of system (1.4).
In fact, together with the continuity of the right-hand side of system (1.4), let \(k\to\infty\), we can easily get
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{i}^{*}(t)}{dt}=-a_{i}x_{i}^{*}(t-\delta_{i}(t))+\sum_{j=1}^{n}a_{ij}(t)f_{j}(y_{j}^{*}(t-\sigma_{ij}(t)))+I_{i}(t),\\ \frac{dy_{i}^{*}(t)}{dt}=-b_{i}y_{i}^{*}(t-\eta_{i}(t))+\sum_{j=1}^{n}b_{ij}(t)g_{j}(x_{j}^{*}(t-\tau_{ij}(t)))+J_{i}(t). \end{cases}\displaystyle \end{aligned}$$
(3.14)
Therefore, \((x^{*}(t),y^{*}(t))^{T}\) is a solution of (1.4). Finally, by applying Theorem 3.1, it is easy to check that \((x^{*}(t),y^{*}(t))^{T}\) is globally exponentially stable. This completes the proof of Theorem 3.2. □

4 An example

In this section, we give an example to illustrate our main results derived in the previous sections. Consider the following BAM neural network with time-varying delays in the leakage terms:
$$\begin{aligned} \textstyle\begin{cases} \frac{dx_{1}(t)}{dt}=-a_{1}x_{1}(t-\delta_{1}(t))+\sum_{j=1}^{2}a_{1j}(t)f_{j}(y_{j}(t-\sigma_{1j}(t)))+I_{1}(t),\\ \frac{dx_{2}(t)}{dt}=-a_{2}x_{2}(t-\delta_{2}(t))+\sum_{j=1}^{2}a_{2j}(t)f_{j}(y_{j}(t-\sigma_{2j}(t)))+I_{2}(t),\\ \frac{dy_{1}(t)}{dt}=-b_{1}y_{1}(t-\eta_{1}(t))+\sum_{j=1}^{2}b_{1j}(t)g_{j}(x_{j}(t-\tau_{1j}(t)))+J_{1}(t),\\ \frac{dy_{2}(t)}{dt}=-b_{2}y_{2}(t-\eta_{2}(t))+\sum_{j=1}^{2}b_{2j}(t)g_{j}(x_{j}(t-\tau_{2j}(t)))+J_{2}(t), \end{cases}\displaystyle \end{aligned}$$
(4.1)
where
$$\begin{aligned} & \left [ \begin{matrix} \delta_{1}(t) & \delta_{2}(t) \\ \eta_{1}(t)& \eta_{2}(t) \end{matrix} \right ]=\left [ \begin{matrix} 0.05 \vert \sin t \vert & 0.05 \vert \sin t \vert \\ 0.04 \vert \cos t \vert & 0.04 \vert \cos t \vert \end{matrix} \right ], \\ & \left [ \begin{matrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t)& a_{22}(t) \end{matrix} \right ]=\left [ \begin{matrix} 0.3 \vert \cos t \vert & 0.3 \vert \cos t \vert \\ 0.5 \vert \sin t \vert & 0.5 \vert \sin t \vert \end{matrix} \right ], \\ &\left [ \begin{matrix} b_{11}(t) & b_{12}(t) \\ b_{21}(t)& b_{22}(t) \end{matrix} \right ]=\left [ \begin{matrix} 0.03 \vert \cos t \vert & 0.03 \vert \cos t \vert \\ 0.05 \vert \sin t \vert & 0.05 \vert \sin t \vert \end{matrix} \right ], \\ & \left [ \begin{matrix} I_{1}(t) & I_{2}(t) \\ J_{1}(t)& J_{2}(t) \end{matrix} \right ]=\left [ \begin{matrix} 0.5\cos t& 0.5\cos t \\ 0.5\sin t & 0.5\sin t \end{matrix} \right ],\qquad \left [ \begin{matrix} a_{1} & a_{2} \\ b_{1}& b_{2} \end{matrix} \right ]=\left [ \begin{matrix} 2& 2 \\ 2 & 2 \end{matrix} \right ]. \end{aligned}$$
Set \(f_{j}(u)=g_{j}(u)=\frac{1}{2}( \vert u+1 \vert - \vert u-1 \vert ),j=1,2\). Then \(L_{jf}=g_{jg}=M_{j}^{f}=M_{j}^{g}=1, \delta_{1}^{+}=\delta_{2}^{+}=0.05, a_{1j}^{+}=0.3, a_{2j}^{+}=0.5, \eta_{1}^{+}=\eta_{2}^{+}=0.04, b_{1j}^{+}=0.03, b_{2j}^{+}=0.05, j=1,2\). It is easy to verify that
$$\frac{\sqrt{2}}{\alpha}\bigl(a_{i}\delta_{i}^{+}+b_{i} \eta_{i}^{+}\bigr)\approx0.12726< 1 $$
and
$$\begin{aligned} & {-}2a_{1}+a_{1}^{2}\delta_{1}^{+}+ \sum_{j=1}^{2}a_{1}\delta _{1}^{+}a_{1j}^{+}L_{jf}^{2\xi_{j}}+ \sum_{j=1}^{2}a_{1j}^{+}L_{jf}^{2\xi_{j}} \\ & \quad{}+\sum_{i=1}^{2}a_{i}^{2} \delta_{i}^{+}+\sum_{j=1}^{2}b_{1} \eta _{1}^{+}b_{1j}^{+}L_{jg}^{2(1-\varepsilon _{j})}+b_{1j}^{+}L_{jg}^{2(1-\varepsilon_{j})}=-2.862< 0, \\ & {-}2a_{2}+a_{2}^{2}\delta_{2}^{+}+ \sum_{j=1}^{2}a_{2}\delta _{2}^{+}a_{2j}^{+}L_{jf}^{2\xi_{j}}+ \sum_{j=1}^{2}a_{2j}^{+}L_{jf}^{2\xi_{j}} \\ & \quad{}+\sum_{i=1}^{2}a_{i}^{2} \delta_{i}^{+}+\sum_{j=1}^{2}b_{2} \eta _{2}^{+}b_{2j}^{+}L_{jg}^{2(1-\varepsilon _{j})}+b_{2j}^{+}L_{jg}^{2(1-\varepsilon_{j})}=-2.04< 0, \\ & {-}2b_{1}+b_{1}^{2}\eta_{1}^{+}+ \sum_{j=1}^{2}b_{1}\eta _{1}^{+}b_{1j}^{+}L_{jg}^{2\varepsilon_{j}}+ \sum_{j=1}^{2}b_{1j}^{+}L_{jg}^{2\varepsilon_{j}} \\ & \quad{}+\sum_{i=1}^{2}a_{1}^{2} \delta_{1}^{+}a_{1j}^{+}L_{jf}^{2(1-\xi _{j})}+a_{1j}^{+}L_{jf}^{2(1-\xi_{j})}+b_{1} \eta_{1}^{+}=-3.256< 0, \\ & {-}2b_{2}+b_{2}^{2}\eta_{2}^{+}+ \sum_{j=1}^{2}b_{2}\eta _{2}^{+}b_{2j}^{+}L_{jg}^{2\varepsilon_{j}}+ \sum_{j=1}^{2}b_{2j}^{+}L_{jg}^{2\varepsilon_{j}} \\ & \quad{}+\sum_{i=1}^{2}a_{2}^{2} \delta_{2}^{+}a_{2j}^{+}L_{jf}^{2(1-\xi _{j})}+a_{2j}^{+}L_{jf}^{2(1-\xi_{j})}+b_{2} \eta_{2}^{+}=-3.024< 0. \end{aligned}$$
Then all the conditions (H1)–(H4) hold. Thus system (4.1) has exactly one π-anti-periodic solution which is globally exponentially stable. The results are illustrated in Fig. 1.

5 Conclusions

In this paper, we have investigated the asymptotic behavior of BAM neural networks with time-varying delays in the leakage terms. Applying the fundamental solution matrix of coefficient matrix, we obtained a series of new sufficient conditions to guarantee the existence and global exponential stability of an anti-periodic solution for the BAM neural networks with time-varying delays in the leakage terms. The obtained conditions are easy to check in practice. Finally, an example is included to illustrate the feasibility and effectiveness.

Acknowledgements

The first author was supported by the National Natural Science Foundation of China (No. 61673008) and Project of High-level Innovative Talents of Guizhou Province ([2016]5651), Major Research Project of the Innovation Group of the Education Department of Guizhou Province ([2017]039), Project of Key Laboratory of Guizhou Province with Financial and Physical Features ([2017]004) and Foundation of Science and Technology of Guizhou Province (2018). The authors would like to thank the referees and the editor for helpful suggestions incorporated into this paper.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Guo, S.J., Huang, L.H.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Phys. D: Nonlinear Phenom. 183(1–2), 19–44 (2003) CrossRefMATHMathSciNet Guo, S.J., Huang, L.H.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Phys. D: Nonlinear Phenom. 183(1–2), 19–44 (2003) CrossRefMATHMathSciNet
2.
go back to reference Song, Y.Y., Han, Y.Y., Peng, Y.H.: Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays. Neurocomputing 121, 442–452 (2013) CrossRef Song, Y.Y., Han, Y.Y., Peng, Y.H.: Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays. Neurocomputing 121, 442–452 (2013) CrossRef
3.
go back to reference Ho, D.W.C., Liang, J.L., Lam, J.: Global exponential stability of impulsive high-order BAM neural networks with time-varying delays. Neural Netw. 19(10), 1581–1590 (2006) CrossRefMATH Ho, D.W.C., Liang, J.L., Lam, J.: Global exponential stability of impulsive high-order BAM neural networks with time-varying delays. Neural Netw. 19(10), 1581–1590 (2006) CrossRefMATH
4.
go back to reference Zhang, Z.Q., Yang, Y., Huang, Y.S.: Global exponential stability of interval general BAM neural networks with reaction-diffusion terms and multiple time-varying delays. Neural Netw. 24(5), 457–465 (2011) CrossRefMATH Zhang, Z.Q., Yang, Y., Huang, Y.S.: Global exponential stability of interval general BAM neural networks with reaction-diffusion terms and multiple time-varying delays. Neural Netw. 24(5), 457–465 (2011) CrossRefMATH
5.
go back to reference Zhang, Z.Q., Liu, K.Y.: Existence and global exponential stability of a periodic solution to interval general bidirectional associative memory (BAM) neural networks with multiple delays on time scales. Neural Netw. 24(5), 427–439 (2011) CrossRefMATH Zhang, Z.Q., Liu, K.Y.: Existence and global exponential stability of a periodic solution to interval general bidirectional associative memory (BAM) neural networks with multiple delays on time scales. Neural Netw. 24(5), 427–439 (2011) CrossRefMATH
6.
go back to reference Zhang, Z.Q., Liu, W.B., Zhou, D.M.: Global asymptotic stability to a generalized Cohen–Grossberg BAM neural networks of neutral type delays. Neural Netw. 25, 94–105 (2012) CrossRefMATH Zhang, Z.Q., Liu, W.B., Zhou, D.M.: Global asymptotic stability to a generalized Cohen–Grossberg BAM neural networks of neutral type delays. Neural Netw. 25, 94–105 (2012) CrossRefMATH
7.
go back to reference Samidurai, R., Sakthivel, R., Anthoni, S.M.: Global asymptotic stability of BAM neural networks with mixed delays and impulses. Appl. Math. Comput. 212(1), 113–119 (2009) MATHMathSciNet Samidurai, R., Sakthivel, R., Anthoni, S.M.: Global asymptotic stability of BAM neural networks with mixed delays and impulses. Appl. Math. Comput. 212(1), 113–119 (2009) MATHMathSciNet
8.
go back to reference Raja, R., Anthoni, S.M.: Global exponential stability of BAM neural networks with time-varying delays: the discrete-time case. Commun. Nonlinear Sci. Numer. Simul. 16(2), 613–622 (2011) CrossRefMATHMathSciNet Raja, R., Anthoni, S.M.: Global exponential stability of BAM neural networks with time-varying delays: the discrete-time case. Commun. Nonlinear Sci. Numer. Simul. 16(2), 613–622 (2011) CrossRefMATHMathSciNet
9.
go back to reference Zhang, Z.Q., Zhou, D.M.: Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks. J. Franklin Inst. 347(5), 763–780 (2010) CrossRefMATHMathSciNet Zhang, Z.Q., Zhou, D.M.: Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks. J. Franklin Inst. 347(5), 763–780 (2010) CrossRefMATHMathSciNet
10.
go back to reference Lakshmanan, S., Park, J.H., Lee, T.H., Jung, H.Y., Rakkiyappan, R.: Stability criteria for BAM neural networks with leakage delays and probabilistic time-varying delays. Appl. Math. Comput. 219(17), 9408–9423 (2013) MATHMathSciNet Lakshmanan, S., Park, J.H., Lee, T.H., Jung, H.Y., Rakkiyappan, R.: Stability criteria for BAM neural networks with leakage delays and probabilistic time-varying delays. Appl. Math. Comput. 219(17), 9408–9423 (2013) MATHMathSciNet
11.
go back to reference Li, Y.K., Wang, C.: Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses. Fuzzy Sets Syst. 217, 62–79 (2013) CrossRefMATHMathSciNet Li, Y.K., Wang, C.: Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses. Fuzzy Sets Syst. 217, 62–79 (2013) CrossRefMATHMathSciNet
12.
go back to reference Chen, A.P., Huang, L.H., Cao, J.D.: Existence and stability of almost periodic solution for BAM neural networks with delays. Appl. Math. Comput. 137(1), 177–193 (2003) MATHMathSciNet Chen, A.P., Huang, L.H., Cao, J.D.: Existence and stability of almost periodic solution for BAM neural networks with delays. Appl. Math. Comput. 137(1), 177–193 (2003) MATHMathSciNet
13.
go back to reference Zhang, Z.Q., Liu, K.Y., Yang, Y.: New LMI-based condition on global asymptotic stability concerning BAM neural networks of neutral type. Neurocomputing 81, 24–32 (2012) CrossRef Zhang, Z.Q., Liu, K.Y., Yang, Y.: New LMI-based condition on global asymptotic stability concerning BAM neural networks of neutral type. Neurocomputing 81, 24–32 (2012) CrossRef
14.
go back to reference Zhang, C.R., Zheng, B.D., Wang, L.C.: Multiple Hopf bifurcations of symmetric BAM neural network model with delay. Appl. Math. Lett. 22(4), 616–622 (2009) CrossRefMATHMathSciNet Zhang, C.R., Zheng, B.D., Wang, L.C.: Multiple Hopf bifurcations of symmetric BAM neural network model with delay. Appl. Math. Lett. 22(4), 616–622 (2009) CrossRefMATHMathSciNet
15.
go back to reference Song, Q.K., Wang, Z.D.: An analysis on existence and global exponential stability of periodic solutions for BAM neural networks with time-varying delays. Nonlinear Anal., Real World Appl. 8(4), 1224–1234 (2007) CrossRefMATHMathSciNet Song, Q.K., Wang, Z.D.: An analysis on existence and global exponential stability of periodic solutions for BAM neural networks with time-varying delays. Nonlinear Anal., Real World Appl. 8(4), 1224–1234 (2007) CrossRefMATHMathSciNet
16.
go back to reference Sakthivel, R., Arunkumar, A., Mathiyalagan, K., Marshal Anthoni, S.: Robust passivity analysis of fuzzy Cohen–Grossberg BAM neural networks with time-varying delays. Appl. Math. Comput. 218(7), 3799–3809 (2011) MATHMathSciNet Sakthivel, R., Arunkumar, A., Mathiyalagan, K., Marshal Anthoni, S.: Robust passivity analysis of fuzzy Cohen–Grossberg BAM neural networks with time-varying delays. Appl. Math. Comput. 218(7), 3799–3809 (2011) MATHMathSciNet
17.
go back to reference Jiang, H.J., Teng, Z.D.: Boundedness, periodic solutions and global stability for cellular neural networks with variable coefficients and infinite delays. Neurocomputing 72(10–12), 2455–2463 (2009) CrossRef Jiang, H.J., Teng, Z.D.: Boundedness, periodic solutions and global stability for cellular neural networks with variable coefficients and infinite delays. Neurocomputing 72(10–12), 2455–2463 (2009) CrossRef
18.
go back to reference Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R.: Global robust asymptotic stability analysis of uncertain switched Hopfield neural networks with time delay in the leakage term. Neural Comput. Appl. 21(7), 1593–1616 (2012) CrossRef Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R.: Global robust asymptotic stability analysis of uncertain switched Hopfield neural networks with time delay in the leakage term. Neural Comput. Appl. 21(7), 1593–1616 (2012) CrossRef
19.
go back to reference Samidurai, R., Sakthivel, R., Anthoni, S.M.: Global asymptotic stability of BAM neural networks mixed delays and impulses. Appl. Math. Comput. 212(1), 113–119 (2009) MATHMathSciNet Samidurai, R., Sakthivel, R., Anthoni, S.M.: Global asymptotic stability of BAM neural networks mixed delays and impulses. Appl. Math. Comput. 212(1), 113–119 (2009) MATHMathSciNet
20.
go back to reference Li, Y.K., Chen, X.R., Zhao, L.: Stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural networks with impulses on time scales. Neurocomputing 72(7–9), 1621–1673 (2009) CrossRef Li, Y.K., Chen, X.R., Zhao, L.: Stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural networks with impulses on time scales. Neurocomputing 72(7–9), 1621–1673 (2009) CrossRef
21.
go back to reference Liu, Y.G., Huang, Z.X., Chen, L.P.: Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays. Neural Comput. Appl. 21(5), 821–831 (2012) CrossRef Liu, Y.G., Huang, Z.X., Chen, L.P.: Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays. Neural Comput. Appl. 21(5), 821–831 (2012) CrossRef
22.
go back to reference Balasubramaniam, P., Rakkiyappan, R., Sathy, R.: Delay dependent stability results for fuzzy BAM neural networks with Markovian jumping parameters. Expert Syst. Appl. 38(1), 121–130 (2011) CrossRefMATH Balasubramaniam, P., Rakkiyappan, R., Sathy, R.: Delay dependent stability results for fuzzy BAM neural networks with Markovian jumping parameters. Expert Syst. Appl. 38(1), 121–130 (2011) CrossRefMATH
23.
go back to reference Stamova, I.M., Ilarionov, R., Krustev, K.: Asymptotic behavior of equilibriums of a class of impulsive bidirectional associative memory neural networks with time-varying delays. Neural Comput. Appl. 20(7), 1111–1116 (2011) CrossRef Stamova, I.M., Ilarionov, R., Krustev, K.: Asymptotic behavior of equilibriums of a class of impulsive bidirectional associative memory neural networks with time-varying delays. Neural Comput. Appl. 20(7), 1111–1116 (2011) CrossRef
24.
go back to reference Park, J.H., Park, C.H., Kwon, O.M., Lee, S.M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199(2), 716–722 (2008) MATHMathSciNet Park, J.H., Park, C.H., Kwon, O.M., Lee, S.M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199(2), 716–722 (2008) MATHMathSciNet
25.
go back to reference Park, J.H., Lee, S.M., Kwon, O.M.: On exponential stability of bidirectional associative memory neural networks with time-varying delays. Chaos Solitons Fractals 39(3), 1083–1091 (2009) CrossRefMATHMathSciNet Park, J.H., Lee, S.M., Kwon, O.M.: On exponential stability of bidirectional associative memory neural networks with time-varying delays. Chaos Solitons Fractals 39(3), 1083–1091 (2009) CrossRefMATHMathSciNet
26.
go back to reference Balasubramaniam, P., Vembarasan, V.: Asymptotic stability of BAM neural networks of neutral-type with impulsive effects and time delay in the leakage term. Int. J. Comput. Math. 88(15), 3271–3291 (2011) CrossRefMATHMathSciNet Balasubramaniam, P., Vembarasan, V.: Asymptotic stability of BAM neural networks of neutral-type with impulsive effects and time delay in the leakage term. Int. J. Comput. Math. 88(15), 3271–3291 (2011) CrossRefMATHMathSciNet
27.
go back to reference Balasubramaniam, P., Vembarasan, V.: Robust stability of uncertain fuzzy BAM neural networks of neutral-type Markovian jumping parameters and impulses. Comput. Math. Appl. 62(4), 1838–1861 (2011) CrossRefMATHMathSciNet Balasubramaniam, P., Vembarasan, V.: Robust stability of uncertain fuzzy BAM neural networks of neutral-type Markovian jumping parameters and impulses. Comput. Math. Appl. 62(4), 1838–1861 (2011) CrossRefMATHMathSciNet
28.
go back to reference Domoshnitsky, A., Sheina, M.V.: Nonnegativity of Cauchy matrix and stability of systems with delay. Differ. Uravn. 25, 201–208 (1989) Domoshnitsky, A., Sheina, M.V.: Nonnegativity of Cauchy matrix and stability of systems with delay. Differ. Uravn. 25, 201–208 (1989)
29.
go back to reference Bainov, D., Domoshnitsky, A.: Nonnegativity of the Cauchy matrix and exponential stability of a neutral type system of functional-differential equations. Extr. Math. 8(1), 75–82 (1993) MATHMathSciNet Bainov, D., Domoshnitsky, A.: Nonnegativity of the Cauchy matrix and exponential stability of a neutral type system of functional-differential equations. Extr. Math. 8(1), 75–82 (1993) MATHMathSciNet
30.
go back to reference Gyori, I., Hartung, F.: Fundamental solution and asymptotic stability of linear delay differential equations. Dyn. Contin. Discrete Impuls. Syst. 13, 261–287 (2006) MATHMathSciNet Gyori, I., Hartung, F.: Fundamental solution and asymptotic stability of linear delay differential equations. Dyn. Contin. Discrete Impuls. Syst. 13, 261–287 (2006) MATHMathSciNet
31.
go back to reference Berezansky, L., Braverman, E., Domoshnitsky, A.: On nonoscillation of systems of delay equations. Funkc. Ekvacioj 54, 275–296 (2011) CrossRefMATHMathSciNet Berezansky, L., Braverman, E., Domoshnitsky, A.: On nonoscillation of systems of delay equations. Funkc. Ekvacioj 54, 275–296 (2011) CrossRefMATHMathSciNet
32.
go back to reference Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012) CrossRefMATH Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012) CrossRefMATH
33.
go back to reference Domoshnitsky, A., Gitman, M., Shklyar, R.: Stability and estimate of solution to uncertain neutral delay systems. Bound. Value Probl. 2014, 55 (2014) CrossRefMATHMathSciNet Domoshnitsky, A., Gitman, M., Shklyar, R.: Stability and estimate of solution to uncertain neutral delay systems. Bound. Value Probl. 2014, 55 (2014) CrossRefMATHMathSciNet
34.
go back to reference Domoshnitsky, A., Fridman, E.: A positivity-based approach to delay-dependent stability of systems with large time-varying delays. Syst. Control Lett. 97, 139–148 (2016) CrossRefMATHMathSciNet Domoshnitsky, A., Fridman, E.: A positivity-based approach to delay-dependent stability of systems with large time-varying delays. Syst. Control Lett. 97, 139–148 (2016) CrossRefMATHMathSciNet
35.
go back to reference Tang, X.H., Chen, S.T.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 110 (2017) CrossRefMATHMathSciNet Tang, X.H., Chen, S.T.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 110 (2017) CrossRefMATHMathSciNet
36.
go back to reference Chen, S.T., Tang, X.H.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \(R^{3}\). Z. Angew. Math. Phys. 67(2), 1–18 (2016) Chen, S.T., Tang, X.H.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \(R^{3}\). Z. Angew. Math. Phys. 67(2), 1–18 (2016)
37.
go back to reference Tang, X.H., Chen, S.T.: Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems with general potentials. Discrete Contin. Dyn. Syst., Ser. A 37(9), 4973–5002 (2017) CrossRefMATH Tang, X.H., Chen, S.T.: Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems with general potentials. Discrete Contin. Dyn. Syst., Ser. A 37(9), 4973–5002 (2017) CrossRefMATH
38.
go back to reference Xu, C.J., Li, P.L.: Global exponential stability of periodic solution for fuzzy cellular neural networks with distributed delays and variable coefficients. J. Intell. Fuzzy Syst. 32(2), 2603–2615 (2017) CrossRefMATH Xu, C.J., Li, P.L.: Global exponential stability of periodic solution for fuzzy cellular neural networks with distributed delays and variable coefficients. J. Intell. Fuzzy Syst. 32(2), 2603–2615 (2017) CrossRefMATH
39.
go back to reference Xu, C.J., Li, P.L.: pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays. Nonlinear Anal., Model. Control 22(4), 531–544 (2017) CrossRefMathSciNet Xu, C.J., Li, P.L.: pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays. Nonlinear Anal., Model. Control 22(4), 531–544 (2017) CrossRefMathSciNet
40.
go back to reference Xu, C.J., Li, P.L.: Global exponential convergence of fuzzy cellular neural networks with leakage delays, distributed delays and proportional delays. Circuits Syst. Signal Process. 37(1), 163–177 (2018) CrossRefMathSciNet Xu, C.J., Li, P.L.: Global exponential convergence of fuzzy cellular neural networks with leakage delays, distributed delays and proportional delays. Circuits Syst. Signal Process. 37(1), 163–177 (2018) CrossRefMathSciNet
41.
go back to reference Xu, C.J., Li, P.L.: On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275, 377–382 (2018) CrossRef Xu, C.J., Li, P.L.: On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275, 377–382 (2018) CrossRef
42.
go back to reference Kosko, B.: Adaptive bi-directional associative memories. Appl. Opt. 26(23), 4947–4960 (1987) CrossRef Kosko, B.: Adaptive bi-directional associative memories. Appl. Opt. 26(23), 4947–4960 (1987) CrossRef
43.
go back to reference Haykin, S.: Neural Networks. Prentice-Hall, New Jersey (1994) MATH Haykin, S.: Neural Networks. Prentice-Hall, New Jersey (1994) MATH
44.
go back to reference Kosok, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, New Delhi (1992) Kosok, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, New Delhi (1992)
45.
go back to reference Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Populations Dynamics. Kluwer Academic Publishers, Dordrecht (1992) CrossRefMATH Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Populations Dynamics. Kluwer Academic Publishers, Dordrecht (1992) CrossRefMATH
46.
go back to reference Rakkiyappan, R., Chandrasekar, A., Lakshmanan, S., Park, J.H., Jung, H.Y.: Effects of leakage time-varying delays in Markovian jump neural networks with impulse control. Neurocomputing 121(1), 365–378 (2013) CrossRef Rakkiyappan, R., Chandrasekar, A., Lakshmanan, S., Park, J.H., Jung, H.Y.: Effects of leakage time-varying delays in Markovian jump neural networks with impulse control. Neurocomputing 121(1), 365–378 (2013) CrossRef
47.
go back to reference Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R.: Leakage delays in T-S fuzzy cellular neural networks. Neural Process. Lett. 33(2), 111–136 (2011) CrossRefMATH Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R.: Leakage delays in T-S fuzzy cellular neural networks. Neural Process. Lett. 33(2), 111–136 (2011) CrossRefMATH
49.
go back to reference Liu, B.W.: Global exponential stability for BAM neural networks with time-varying delays in the leakage terms. Nonlinear Anal., Real World Appl. 14(1), 559–566 (2013) CrossRefMATHMathSciNet Liu, B.W.: Global exponential stability for BAM neural networks with time-varying delays in the leakage terms. Nonlinear Anal., Real World Appl. 14(1), 559–566 (2013) CrossRefMATHMathSciNet
50.
go back to reference Wei, X.R., Qiu, Z.P.: Anti-periodic solutions for BAM neural networks with time delays. Appl. Math. Comput. 221, 221–229 (2013) MATHMathSciNet Wei, X.R., Qiu, Z.P.: Anti-periodic solutions for BAM neural networks with time delays. Appl. Math. Comput. 221, 221–229 (2013) MATHMathSciNet
51.
go back to reference Liu, D.Y., Wu, W.J., Liu, H.T., Zhang, J.W.: Anti-periodic solutions for interval general bidirectional associative memory (BAM) neural networks with impulses on time scales. J. Inf. Comput. Sci. 8(16), 3847–3857 (2011) Liu, D.Y., Wu, W.J., Liu, H.T., Zhang, J.W.: Anti-periodic solutions for interval general bidirectional associative memory (BAM) neural networks with impulses on time scales. J. Inf. Comput. Sci. 8(16), 3847–3857 (2011)
52.
go back to reference Li, Y.K., Yang, L.: Anti-periodic solutions for Cohen–Grossberg neural networks with bounded and unbounded delays. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3134–3140 (2009) CrossRefMATHMathSciNet Li, Y.K., Yang, L.: Anti-periodic solutions for Cohen–Grossberg neural networks with bounded and unbounded delays. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3134–3140 (2009) CrossRefMATHMathSciNet
53.
go back to reference Shao, J.Y.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A 372(30), 5011–5016 (2008) CrossRefMATH Shao, J.Y.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A 372(30), 5011–5016 (2008) CrossRefMATH
54.
go back to reference Fan, Q.Y., Wang, W.T., Yi, X.J.: Anti-periodic solutions for a class of nonlinear nth-order differential equations with delays. J. Comput. Appl. Math. 230(2), 762–769 (2009) CrossRefMATHMathSciNet Fan, Q.Y., Wang, W.T., Yi, X.J.: Anti-periodic solutions for a class of nonlinear nth-order differential equations with delays. J. Comput. Appl. Math. 230(2), 762–769 (2009) CrossRefMATHMathSciNet
55.
go back to reference Li, Y.K., Xu, E.L., Zhang, T.W.: Existence and stability of anti-periodic solution for a class of generalized neural networks with impulsives and arbitrary delays on time scales. J. Inequal. Appl. 2010, Article ID 132790 (2010) CrossRefMATH Li, Y.K., Xu, E.L., Zhang, T.W.: Existence and stability of anti-periodic solution for a class of generalized neural networks with impulsives and arbitrary delays on time scales. J. Inequal. Appl. 2010, Article ID 132790 (2010) CrossRefMATH
56.
57.
58.
go back to reference Peng, G.Q., Huang, L.H.: Anti-periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Nonlinear Anal., Real World Appl. 10(40), 2434–2440 (2009) CrossRefMATHMathSciNet Peng, G.Q., Huang, L.H.: Anti-periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Nonlinear Anal., Real World Appl. 10(40), 2434–2440 (2009) CrossRefMATHMathSciNet
59.
go back to reference Huang, Z.D., Peng, L.Q., Xu, M.: Anti-periodic solutions for high-order cellular neural networks with time-varying delays. Electron. J. Differ. Equ. 2010, 59 (2010) MATHMathSciNet Huang, Z.D., Peng, L.Q., Xu, M.: Anti-periodic solutions for high-order cellular neural networks with time-varying delays. Electron. J. Differ. Equ. 2010, 59 (2010) MATHMathSciNet
60.
go back to reference Zhang, A.P.: Existence and exponential stability of anti-periodic solutions for HCNNs with time-varying leakage delays. Adv. Differ. Equ. 2013, 162 (2013) CrossRefMathSciNet Zhang, A.P.: Existence and exponential stability of anti-periodic solutions for HCNNs with time-varying leakage delays. Adv. Differ. Equ. 2013, 162 (2013) CrossRefMathSciNet
61.
go back to reference Li, Y.K., Yang, L., Wu, W.Q.: Anti-periodic solutions for a class of Cohen–Grossberg neural networks with time-varying on time scales. Int. J. Syst. Sci. 42(7), 1127–1132 (2011) CrossRefMATH Li, Y.K., Yang, L., Wu, W.Q.: Anti-periodic solutions for a class of Cohen–Grossberg neural networks with time-varying on time scales. Int. J. Syst. Sci. 42(7), 1127–1132 (2011) CrossRefMATH
62.
go back to reference Pan, L.J., Cao, J.D.: Anti-periodic solution for delayed cellular neural networks with impulsive effects. Nonlinear Anal., Real World Appl. 12(6), 3014–3027 (2011) MATHMathSciNet Pan, L.J., Cao, J.D.: Anti-periodic solution for delayed cellular neural networks with impulsive effects. Nonlinear Anal., Real World Appl. 12(6), 3014–3027 (2011) MATHMathSciNet
63.
go back to reference Li, Y.K.: Anti-periodic solutions to impulsive shunting inhibitory cellular neural networks with distributed delays on time scales. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3326–3336 (2011) CrossRefMATHMathSciNet Li, Y.K.: Anti-periodic solutions to impulsive shunting inhibitory cellular neural networks with distributed delays on time scales. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3326–3336 (2011) CrossRefMATHMathSciNet
64.
go back to reference Peng, L., Wang, W.T.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms. Neurocomputing 111, 27–33 (2013) CrossRef Peng, L., Wang, W.T.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms. Neurocomputing 111, 27–33 (2013) CrossRef
65.
go back to reference Shi, P.L., Dong, L.Z.: Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses. Appl. Math. Comput. 216(2), 623–630 (2010) MATHMathSciNet Shi, P.L., Dong, L.Z.: Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses. Appl. Math. Comput. 216(2), 623–630 (2010) MATHMathSciNet
Metadata
Title
Anti-periodic oscillations of bidirectional associative memory (BAM) neural networks with leakage delays
Authors
Changjin Xu
Lilin Chen
Ting Guo
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1658-2

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner