Skip to main content
Top
Published in: Topics in Catalysis 19-20/2022

23-11-2022 | Original Paper

Antibacterial Nanozymes: An Emerging Innovative Approach to Oral Health Management

Authors: C. Pushpalatha, S. V. Sowmya, Dominic Augustine, Chhaya Kumar, V. S. Gayathri, Arshiya Shakir, T. Niranjana Prabhu, K. V. Sandhya, Shankargouda Patil

Published in: Topics in Catalysis | Issue 19-20/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanozymes are becoming more prevalent in nanocatalytic medicine, exhibiting enzyme-like activity with multifunctional nanomaterials. Because of their superior biocompatibility and broad-spectrum antibacterial action, nanozymes are regarded as potent antibacterial agents. The development of nanozymes has demonstrated clear potential to overcome natural enzyme drawbacks such as difficult preparation, ease of denaturation, high cost, and recycling difficulty. Biocatalytic reactions have transformed nanozymes into beneficial antibacterial materials. A comprehensive review of the literature on nanozymes in the treatment of oral diseases such as dental caries, dental pulp diseases, oral ulcers, peri-implantitis, monitoring oral cancer, oral bacteria and ions, and regenerating soft and hard tissues is lacking. As a result, the current review attempts to describe the effective nanozyme-based antibacterial agents for preclinical translations.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Wang X, Sun X, Bu T, Wang Q, Jia P, Dong M, Wang L (2022) In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos B Eng 229:109465CrossRef Wang X, Sun X, Bu T, Wang Q, Jia P, Dong M, Wang L (2022) In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos B Eng 229:109465CrossRef
4.
go back to reference Jana D, Wang D, Bindra AK, Guo Y, Liu J, Zhao Y (2021) Ultrasmall alloy nanozyme for ultrasound-and near-infrared light-promoted tumor ablation. ACS Nano 15(4):7774–7782CrossRef Jana D, Wang D, Bindra AK, Guo Y, Liu J, Zhao Y (2021) Ultrasmall alloy nanozyme for ultrasound-and near-infrared light-promoted tumor ablation. ACS Nano 15(4):7774–7782CrossRef
5.
go back to reference Wan Y, Zhao J, Deng X, Chen J, Xi F, Wang X (2021) Colorimetric and fluorescent dual-modality sensing platform based on fluorescent nanozyme. Front Chem 9:774486CrossRef Wan Y, Zhao J, Deng X, Chen J, Xi F, Wang X (2021) Colorimetric and fluorescent dual-modality sensing platform based on fluorescent nanozyme. Front Chem 9:774486CrossRef
6.
go back to reference Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HM (2022) Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord Chem Rev 469:214685CrossRef Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HM (2022) Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord Chem Rev 469:214685CrossRef
8.
go back to reference Zhang W, Dai X, Jin X, Huang M, Shan J, Chen X, Qian H, Chen Z, Wang X (2022) Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties. Smart Mater Med. Zhang W, Dai X, Jin X, Huang M, Shan J, Chen X, Qian H, Chen Z, Wang X (2022) Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties. Smart Mater Med.
9.
go back to reference Zhang DY, Tu T, Younis MR, Zhu KS, Liu H, Lei S, Qu J, Lin J, Huang P (2021) Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics 11(20):9904CrossRef Zhang DY, Tu T, Younis MR, Zhu KS, Liu H, Lei S, Qu J, Lin J, Huang P (2021) Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics 11(20):9904CrossRef
10.
go back to reference Zhou C, Wang Q, Jiang J, Gao L (2022) Nanozybiotics: nanozyme-based antibacterials against bacterial resistance. Antibiotics 11(3):390CrossRef Zhou C, Wang Q, Jiang J, Gao L (2022) Nanozybiotics: nanozyme-based antibacterials against bacterial resistance. Antibiotics 11(3):390CrossRef
11.
go back to reference Chakraborty N, Gandhi S, Verma R, Roy I (2022) Emerging prospects of nanozymes for antibacterial and anticancer applications. Biomedicines 10(6):1378CrossRef Chakraborty N, Gandhi S, Verma R, Roy I (2022) Emerging prospects of nanozymes for antibacterial and anticancer applications. Biomedicines 10(6):1378CrossRef
12.
go back to reference Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M (2022) Nanozymes-recent development and biomedical applications. J Nanobiotechnol 20(1):1–18CrossRef Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M (2022) Nanozymes-recent development and biomedical applications. J Nanobiotechnol 20(1):1–18CrossRef
13.
go back to reference Zhang L, Jiang C, Li B, Liu Z, Gu B, He S, Li P, Sun Y, Song S (2021) A core-shell Au@ Cu2-xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J Nanobiotechnol 19(1):1–18CrossRef Zhang L, Jiang C, Li B, Liu Z, Gu B, He S, Li P, Sun Y, Song S (2021) A core-shell Au@ Cu2-xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J Nanobiotechnol 19(1):1–18CrossRef
14.
go back to reference Meng X, Li D, Chen L, He H, Wang Q, Hong C, He J, Gao X, Yang Y, Jiang B, Nie G (2021) High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 15(3):5735–5751CrossRef Meng X, Li D, Chen L, He H, Wang Q, Hong C, He J, Gao X, Yang Y, Jiang B, Nie G (2021) High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 15(3):5735–5751CrossRef
15.
go back to reference Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C (2021) A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew Chem Int Ed 60(48):25328–25338CrossRef Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C (2021) A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew Chem Int Ed 60(48):25328–25338CrossRef
16.
go back to reference Ding SS, He L, Bian XW, Tian G (2020) Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 35:100920CrossRef Ding SS, He L, Bian XW, Tian G (2020) Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 35:100920CrossRef
17.
go back to reference Jansman MM, Hosta-Rigau L (2019) Cerium-and iron-oxide-based nanozymes in tissue engineering and regenerative medicine. Catalysts 9(8):691CrossRef Jansman MM, Hosta-Rigau L (2019) Cerium-and iron-oxide-based nanozymes in tissue engineering and regenerative medicine. Catalysts 9(8):691CrossRef
18.
go back to reference Wu H, Liao H, Li F, Lee J, Hu P, Shao W, Li X, Ling D (2020) Bioactive ROS-scavenging nanozymes for regenerative medicine: reestablishing the antioxidant firewall. Nano Select 1(3):285–297CrossRef Wu H, Liao H, Li F, Lee J, Hu P, Shao W, Li X, Ling D (2020) Bioactive ROS-scavenging nanozymes for regenerative medicine: reestablishing the antioxidant firewall. Nano Select 1(3):285–297CrossRef
19.
go back to reference Lin A, Liu S, Wei H (2022) Nanozymes for biomedical applications in orthopaedics. Particuology 76:32–45CrossRef Lin A, Liu S, Wei H (2022) Nanozymes for biomedical applications in orthopaedics. Particuology 76:32–45CrossRef
20.
go back to reference Chen X, Xing H, Zhou Z, Hao Y, Zhang X, Qi F, Zhao J, Gao L, Wang X (2021) Nanozymes go oral: nanocatalytic medicine facilitates dental health. J Mater Chem B 9(6):1491–1502CrossRef Chen X, Xing H, Zhou Z, Hao Y, Zhang X, Qi F, Zhao J, Gao L, Wang X (2021) Nanozymes go oral: nanocatalytic medicine facilitates dental health. J Mater Chem B 9(6):1491–1502CrossRef
21.
go back to reference Bukhari S, Kim D, Liu Y, Karabucak B, Koo H (2018) Novel endodontic disinfection approach using catalytic nanoparticles. J Endodontics 44(5):806–812CrossRef Bukhari S, Kim D, Liu Y, Karabucak B, Koo H (2018) Novel endodontic disinfection approach using catalytic nanoparticles. J Endodontics 44(5):806–812CrossRef
22.
go back to reference Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y (2021) An overview of the use of nanozymes in antibacterial applications. Chem Eng J 418:129431CrossRef Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y (2021) An overview of the use of nanozymes in antibacterial applications. Chem Eng J 418:129431CrossRef
23.
go back to reference Yang B, Chen Y, Shi J (2019) Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 119(8):4881–4985CrossRef Yang B, Chen Y, Shi J (2019) Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 119(8):4881–4985CrossRef
24.
go back to reference Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik TE, Gural’skiy IYA, Pfitzner F, Link T, Schenk S, Panthöfer M (2017) Haloperoxidase mimicry by CeO2− x nanorods combats biofouling. Adv Mater 29(4):1603823CrossRef Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik TE, Gural’skiy IYA, Pfitzner F, Link T, Schenk S, Panthöfer M (2017) Haloperoxidase mimicry by CeO2− x nanorods combats biofouling. Adv Mater 29(4):1603823CrossRef
25.
go back to reference Natalio F, André R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535CrossRef Natalio F, André R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535CrossRef
26.
go back to reference Hu M, Korschelt K, Viel M, Wiesmann N, Kappl M, Brieger J, Landfester K, Therien-Aubin H, Tremel W (2018) Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl Mater Interfaces 10(51):44722–44730CrossRef Hu M, Korschelt K, Viel M, Wiesmann N, Kappl M, Brieger J, Landfester K, Therien-Aubin H, Tremel W (2018) Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl Mater Interfaces 10(51):44722–44730CrossRef
27.
go back to reference Xie Y, Zheng W, Jiang X (2020) Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces 12(8):9041–9049CrossRef Xie Y, Zheng W, Jiang X (2020) Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces 12(8):9041–9049CrossRef
28.
go back to reference Hu WC, Younis MR, Zhou Y, Wang C, Xia XH (2020) In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 16(23):2000553CrossRef Hu WC, Younis MR, Zhou Y, Wang C, Xia XH (2020) In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 16(23):2000553CrossRef
29.
go back to reference Puvvada N, Panigrahi PK, Mandal D, Pathak A (2012) Shape dependent peroxidase mimetic activity towards oxidation of pyrogallol by H 2 O 2. RSC Adv 2(8):3270–3273CrossRef Puvvada N, Panigrahi PK, Mandal D, Pathak A (2012) Shape dependent peroxidase mimetic activity towards oxidation of pyrogallol by H 2 O 2. RSC Adv 2(8):3270–3273CrossRef
30.
go back to reference Lu C, Liu X, Li Y, Yu F, Tang L, Hu Y, Ying Y (2015) Multifunctional janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces 7(28):15395–15402CrossRef Lu C, Liu X, Li Y, Yu F, Tang L, Hu Y, Ying Y (2015) Multifunctional janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces 7(28):15395–15402CrossRef
31.
go back to reference Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012CrossRef Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012CrossRef
32.
go back to reference Xi J, Zhang J, Qian X, An L, Fan L (2020) Using a visible light-triggered pH switch to activate nanozymes for antibacterial treatment. RSC Adv 10(2):909–913CrossRef Xi J, Zhang J, Qian X, An L, Fan L (2020) Using a visible light-triggered pH switch to activate nanozymes for antibacterial treatment. RSC Adv 10(2):909–913CrossRef
33.
go back to reference Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRef Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRef
34.
go back to reference Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha PC, Cormode DP, Koo H (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284CrossRef Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha PC, Cormode DP, Koo H (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284CrossRef
35.
go back to reference Karim MN, Singh M, Weerathunge P, Bian P, Zheng R, Dekiwadia C, Ahmed T, Walia S, Della Gaspera E, Singh S, Ramanathan R (2018) Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuOnanorods. ACS Appl Nano Mater 1(4):1694–1704CrossRef Karim MN, Singh M, Weerathunge P, Bian P, Zheng R, Dekiwadia C, Ahmed T, Walia S, Della Gaspera E, Singh S, Ramanathan R (2018) Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuOnanorods. ACS Appl Nano Mater 1(4):1694–1704CrossRef
36.
go back to reference Li J, Liu W, Wu X, Gao X (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44CrossRef Li J, Liu W, Wu X, Gao X (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44CrossRef
37.
go back to reference Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X (2015) Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137(50):15882–15891CrossRef Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X (2015) Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137(50):15882–15891CrossRef
38.
go back to reference Ge C, Wu R, Chong Y, Fang G, Jiang X, Pan Y, Chen C, Yin JJ (2018) Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv Func Mater 28(28):1801484CrossRef Ge C, Wu R, Chong Y, Fang G, Jiang X, Pan Y, Chen C, Yin JJ (2018) Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv Func Mater 28(28):1801484CrossRef
39.
go back to reference Wang C, Zhang Q, Wang X, Chang H, Zhang S, Tang Y, Xu J, Qi R, Cheng Y (2017) Dynamic modulation of enzyme activity by near-infrared light. AngewandteChemie 129(24):6871–6876 Wang C, Zhang Q, Wang X, Chang H, Zhang S, Tang Y, Xu J, Qi R, Cheng Y (2017) Dynamic modulation of enzyme activity by near-infrared light. AngewandteChemie 129(24):6871–6876
40.
go back to reference Cui R, Han Z, Zhu JJ (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem Eur J 17(34):9377–9384CrossRef Cui R, Han Z, Zhu JJ (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem Eur J 17(34):9377–9384CrossRef
41.
go back to reference Firouzjaei MD, Seyedpour SF, Aktij SA, Giagnorio M, Bazrafshan N, Mollahosseini A, Samadi F, Ahmadalipour S, Firouzjaei FD, Esfahani MR, Tiraferri A (2020) Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Membr Sci 596:117604CrossRef Firouzjaei MD, Seyedpour SF, Aktij SA, Giagnorio M, Bazrafshan N, Mollahosseini A, Samadi F, Ahmadalipour S, Firouzjaei FD, Esfahani MR, Tiraferri A (2020) Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Membr Sci 596:117604CrossRef
42.
go back to reference Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621CrossRef Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621CrossRef
43.
go back to reference Han SI, Lee SW, Cho MG, Yoo JM, Oh MH, Jeong B, Kim D, Park OK, Kim J, Namkoong E, Jo J (2020) Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv Mater 32(31):2001566CrossRef Han SI, Lee SW, Cho MG, Yoo JM, Oh MH, Jeong B, Kim D, Park OK, Kim J, Namkoong E, Jo J (2020) Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv Mater 32(31):2001566CrossRef
44.
go back to reference Chen Z, Wang Z, Ren J, Qu X (2018) Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res 51(3):789–799CrossRef Chen Z, Wang Z, Ren J, Qu X (2018) Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res 51(3):789–799CrossRef
45.
go back to reference Fang J, Wang H, Bao X, Ni Y, Teng Y, Liu J, Sun X, Sun Y, Li H, Zhou Y (2020) Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon 169:370–381CrossRef Fang J, Wang H, Bao X, Ni Y, Teng Y, Liu J, Sun X, Sun Y, Li H, Zhou Y (2020) Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon 169:370–381CrossRef
46.
go back to reference Huang XW, Wei JJ, Liu T, Zhang XL, Bai SM, Yang HH (2017) Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenidenanosheets for antibacterial wound dressings. Nanoscale 9(44):17193–17198CrossRef Huang XW, Wei JJ, Liu T, Zhang XL, Bai SM, Yang HH (2017) Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenidenanosheets for antibacterial wound dressings. Nanoscale 9(44):17193–17198CrossRef
47.
go back to reference Fu W, Zhang X, Mei L, Zhou R, Yin W, Wang Q, Gu Z, Zhao Y (2020) Stimuli-responsive small-on-large nanoradiosensitizer for enhanced tumor penetration and radiotherapy sensitization. ACS Nano 14(8):10001–10017CrossRef Fu W, Zhang X, Mei L, Zhou R, Yin W, Wang Q, Gu Z, Zhao Y (2020) Stimuli-responsive small-on-large nanoradiosensitizer for enhanced tumor penetration and radiotherapy sensitization. ACS Nano 14(8):10001–10017CrossRef
48.
go back to reference Shan J, Yang K, Xiu W, Qiu Q, Dai S, Yuwen L, Weng L, Teng Z, Wang L (2020) Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small 16(40):2001099CrossRef Shan J, Yang K, Xiu W, Qiu Q, Dai S, Yuwen L, Weng L, Teng Z, Wang L (2020) Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small 16(40):2001099CrossRef
49.
go back to reference Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt 1/FeO x. Nat Chem 3(8):634–641CrossRef Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt 1/FeO x. Nat Chem 3(8):634–641CrossRef
50.
go back to reference Xu B, Wang H, Wang W, Gao L, Li S, Pan X, Wang H, Yang H, Meng X, Wu Q, Zheng L (2019) A single-atom nanozyme for wound disinfection applications. AngewandteChemie 131(15):4965–4970 Xu B, Wang H, Wang W, Gao L, Li S, Pan X, Wang H, Yang H, Meng X, Wu Q, Zheng L (2019) A single-atom nanozyme for wound disinfection applications. AngewandteChemie 131(15):4965–4970
51.
go back to reference Ma W, Mao J, Yang X, Pan C, Chen W, Wang M, Yu P, Mao L, Li Y (2019) A single-atom Fe–N 4 catalytic site mimicking bifunctionalantioxidative enzymes for oxidative stress cytoprotection. Chem Commun 55(2):159–162CrossRef Ma W, Mao J, Yang X, Pan C, Chen W, Wang M, Yu P, Mao L, Li Y (2019) A single-atom Fe–N 4 catalytic site mimicking bifunctionalantioxidative enzymes for oxidative stress cytoprotection. Chem Commun 55(2):159–162CrossRef
52.
go back to reference Nath I, Chakraborty J, Verpoort F (2016) Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem Soc Rev 45(15):4127–4170CrossRef Nath I, Chakraborty J, Verpoort F (2016) Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem Soc Rev 45(15):4127–4170CrossRef
53.
go back to reference Wang K, Feng D, Liu TF, Su J, Yuan S, Chen YP, Bosch M, Zou X, Zhou HC (2014) A series of highly stable mesoporousmetalloporphyrin Fe-MOFs. J Am Chem Soc 136(40):13983–13986CrossRef Wang K, Feng D, Liu TF, Su J, Yuan S, Chen YP, Bosch M, Zou X, Zhou HC (2014) A series of highly stable mesoporousmetalloporphyrin Fe-MOFs. J Am Chem Soc 136(40):13983–13986CrossRef
54.
go back to reference Hu M, Korschelt K, Daniel P, Landfester K, Tremel W, Bannwarth MB (2017) Fibrous nanozyme dressings with catalase-like activity for H2O2 reduction to promote wound healing. ACS Appl Mater Interfaces 9(43):38024–38031CrossRef Hu M, Korschelt K, Daniel P, Landfester K, Tremel W, Bannwarth MB (2017) Fibrous nanozyme dressings with catalase-like activity for H2O2 reduction to promote wound healing. ACS Appl Mater Interfaces 9(43):38024–38031CrossRef
55.
go back to reference Wang Y, Chen C, Zhang D, Wang J (2020) Bifunctionalized novel Co-V MMO nanowires: intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Appl Catal B 261:118256CrossRef Wang Y, Chen C, Zhang D, Wang J (2020) Bifunctionalized novel Co-V MMO nanowires: intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Appl Catal B 261:118256CrossRef
56.
go back to reference Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, Jung HI, Ren Z, Li Y, Gubara S, Alawi F (2018) Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 9(1):1–12 Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, Jung HI, Ren Z, Li Y, Gubara S, Alawi F (2018) Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 9(1):1–12
57.
go back to reference Naha PC, Liu Y, Hwang G, Huang Y, Gubara S, Jonnakuti V, Simon-Soro A, Kim D, Gao L, Koo H, Cormode DP (2019) Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13(5):4960–4971CrossRef Naha PC, Liu Y, Hwang G, Huang Y, Gubara S, Jonnakuti V, Simon-Soro A, Kim D, Gao L, Koo H, Cormode DP (2019) Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13(5):4960–4971CrossRef
58.
go back to reference Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H (2019) Catalytic antimicrobial robots for biofilm eradication. Sci Rob 4(29):eaaw2388CrossRef Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H (2019) Catalytic antimicrobial robots for biofilm eradication. Sci Rob 4(29):eaaw2388CrossRef
59.
go back to reference Thukkaram M, Coryn R, Asadian M, EsbahTabaei PS, Rigole P, Rajendhran N, Nikiforov A, Sukumaran J, Coenye T, Van Der Voort P, Du Laing G (2020) Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial, and cell-interactive properties. ACS Appl Mater Interfaces 12(27):30155–30169CrossRef Thukkaram M, Coryn R, Asadian M, EsbahTabaei PS, Rigole P, Rajendhran N, Nikiforov A, Sukumaran J, Coenye T, Van Der Voort P, Du Laing G (2020) Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial, and cell-interactive properties. ACS Appl Mater Interfaces 12(27):30155–30169CrossRef
60.
go back to reference Liu B, Huang Z, Liu J (2016) Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F− detection. Nanoscale 8(28):13562–13567CrossRef Liu B, Huang Z, Liu J (2016) Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F− detection. Nanoscale 8(28):13562–13567CrossRef
61.
go back to reference Zhang L, Qi Z, Zou Y, Zhang J, Xia W, Zhang R, He Z, Cai X, Lin Y, Duan SZ, Li J (2019) Engineering DNA–nanozyme interfaces for rapid detection of dental bacteria. ACS Appl Mater Interfaces 11(34):30640–30647CrossRef Zhang L, Qi Z, Zou Y, Zhang J, Xia W, Zhang R, He Z, Cai X, Lin Y, Duan SZ, Li J (2019) Engineering DNA–nanozyme interfaces for rapid detection of dental bacteria. ACS Appl Mater Interfaces 11(34):30640–30647CrossRef
62.
go back to reference Peres MA, Macpherson LM, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H (2019) Oral diseases: a global public health challenge. Lancet 394(10194):249–260CrossRef Peres MA, Macpherson LM, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H (2019) Oral diseases: a global public health challenge. Lancet 394(10194):249–260CrossRef
63.
go back to reference Yu D, Ma M, Liu Z, Pi Z, Du X, Ren J, Qu X (2020) MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials 255:120160CrossRef Yu D, Ma M, Liu Z, Pi Z, Du X, Ren J, Qu X (2020) MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials 255:120160CrossRef
64.
go back to reference Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651CrossRef Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651CrossRef
65.
go back to reference Naganuma T, Traversa E (2014) The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials 35(15):4441–4453CrossRef Naganuma T, Traversa E (2014) The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials 35(15):4441–4453CrossRef
66.
go back to reference Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Func Mater 20(10):1617–1624CrossRef Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Func Mater 20(10):1617–1624CrossRef
67.
go back to reference Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S (2010) Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem 20(40):8912–8919CrossRef Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S (2010) Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem 20(40):8912–8919CrossRef
68.
go back to reference Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TX, Saraf S, Patra CR, Vlahakis NE, Sayle DC, Self WT, Seal S (2012) The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33(31):7746–7755CrossRef Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TX, Saraf S, Patra CR, Vlahakis NE, Sayle DC, Self WT, Seal S (2012) The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33(31):7746–7755CrossRef
69.
go back to reference Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP (2013) Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34(9):2194–2201CrossRef Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP (2013) Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34(9):2194–2201CrossRef
70.
go back to reference Zhang J, Zou Z, Wang B, Xu G, Wu Q, Zhang Y, Yuan Z, Yang X, Yu C (2018) Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials 161:228–239CrossRef Zhang J, Zou Z, Wang B, Xu G, Wu Q, Zhang Y, Yuan Z, Yang X, Yu C (2018) Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials 161:228–239CrossRef
Metadata
Title
Antibacterial Nanozymes: An Emerging Innovative Approach to Oral Health Management
Authors
C. Pushpalatha
S. V. Sowmya
Dominic Augustine
Chhaya Kumar
V. S. Gayathri
Arshiya Shakir
T. Niranjana Prabhu
K. V. Sandhya
Shankargouda Patil
Publication date
23-11-2022
Publisher
Springer US
Published in
Topics in Catalysis / Issue 19-20/2022
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-022-01731-1

Other articles of this Issue 19-20/2022

Topics in Catalysis 19-20/2022 Go to the issue

Premium Partners